

Copyright © 1987-2006 ComponentOne LLC. All rights reserved.

Corporate Headquarters
ComponentOne LLC
201 South Highland Avenue
3rd Floor
Pittsburgh, PA 15206 · USA

Internet: info@ComponentOne.com
Web site: http://www.componentone.com

Sales

E-mail: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Technical Support
See Technical Support in this manual for information on obtaining technical support.

Trademarks
ComponentOne VSFlexGrid Pro 8.0 and the ComponentOne VSFlexGrid Pro 8.0 logo are trademarks, and ComponentOne is
a registered trademark of ComponentOne LLC. All other trademarks used herein are the properties of their respective owners.

Warranty
ComponentOne warrants that the original CD (or diskettes) is free from defects in material and workmanship, assuming normal
use, for a period of 90 days from the date of purchase. If a defect occurs during this time, you may return the defective CD (or
disk) to ComponentOne, along with a dated proof of purchase, and ComponentOne will replace it at no charge. After 90 days,
you can obtain a replacement for a defective CD (or disk) by sending it and a check for $25 (to cover postage and handling) to
ComponentOne.
Except for the express warranty of the original CD (or disks) set forth here, ComponentOne makes no other warranties, express
or implied. Every attempt has been made to ensure that the information contained in this manual is correct as of the time it was
written. We are not responsible for any errors or omissions. ComponentOne’s liability is limited to the amount you paid for the
product. ComponentOne is not liable for any special, consequential, or other damages for any reason.

Copying and Distribution
While you are welcome to make backup copies of the software for your own use and protection, you are not permitted to make
copies for the use of anyone else. We put a lot of time and effort into creating this product, and we appreciate your support in
seeing that it is used by licensed users only. Please read End User License Agreement for ComponentOne Software and Redistributable
Files sections in this manual before copying and redistributing any ComponentOne VSFlexGrid Pro 8.0 files.

mailto:info@ComponentOne.com
mailto:sales@componentone.com

· iii

Table of Contents
Table of Contents .. iii
Overview...1

VSFlexGrid Controls ... 1
What's New in VSFlexGrid 8.0 for Active X... 2
Installing VSFlexGrid 8.0 for Active X ... 2
Upgrading From Previous Versions .. 3
END-USER LICENSE AGREEMENT FOR COMPONENTONE SOFTWARE........ 3
Technical Support.. 10
Redistributable Files .. 11
Adding the VSFlexGrid 8.0 Component to the Toolbox .. 11

VSFlexGrid Introduction... 13
Basic Operations.. 14
Editing Cells.. 15
Formatting Cells .. 16
Outlining and Summarizing ... 17
Merging Cells .. 19
Saving, Loading, and Printing .. 21
Data Binding (ADO and DAO).. 22
Using VSFlexGrid in Visual C++... 24
Using VSFlexGrid in Visual J++.. 30
VSFlexGrid Property Groups ... 32

VSFlexGrid Samples .. 35
Visual Basic Samples ... 35
C++ Samples... 37
HTML Samples... 39

VSFlexGrid Tutorials ... 41
Edit Demo... 41
Outline Demo.. 45
Data Analysis Demo.. 48
Cell Flooding Demo .. 53
ToolTip Demo... 54
Printing Demo... 55
OLE Drag and Drop Demo.. 56
Visual C++ MFC Demo .. 59

VSFlexString Introduction ... 65
Regular Expressions... 66
Matching Demo .. 68
Replacing Demo.. 68
Data-Cleaning Demo... 69
Calculator Demo ... 70

VSFlexGrid Control ... 73
VSFlexGrid Properties, Events, and Methods ... 73

VSFlexString Control ..257
VSFlexString Properties, Events, and Methods ... 257

Frequently Asked Questions..271
How do I update a project file that uses VSFLEX7 to VSFlexGrid 8.0?...................... 271

iv ·

What is difference between VSFLEX8.OCX, VSFLEX8D.OCX, and VSFLEX8L.OCX?271
Does VSFlexGrid 7.0 work with VB4-16 or any other 16-bit environments? 272
When adding VSFLEX8.OCX to my VB4 or VB5 project, I get the following error message: "Error
loading DLL". What is wrong? ... 272
Does VSFlexGrid 7.0 work with VB4, VB5 and VB6?.. 272
How do I limit the length of text entries in a column? .. 272
There are several ways to add data to a VSFlexGrid control. Which one is the fastest? 272
How can I add or delete a column at a given position?... 273
How can I implement OLE Drag and Drop? ... 273
How can I print the contents of a VSFlexGrid control? .. 273
How do I handle optional parameters in VSFlexGrid using C++?.............................. 273
How do I handle Pictures in VSFlexGrid when using C++?....................................... 274

Index... 275

VSFlexGrid Controls · 1

Overview

Welcome to ComponentOne VSFlexGrid® Pro 8.0.

VSFlexGrid 8.0 includes VSFlexGrid, a full-featured grid control and VSFlexString, a powerful regular
expression engine. If you like VSFlexGrid 8.0, you can check out our other products by visiting our web site
at http://www.componentone.com.

VSFlexGrid 8.0 incorporates the latest data-binding technologies -- ADO 2.1 and OLEDB, as well as DAO --
giving you the flexibility to choose when to migrate your applications to the newest generation of data access
methods as your needs dictate.

ComponentOne has a user-friendly distribution policy. We want every programmer to obtain a copy of
VSFlexGrid 8.0 to try for as long as they wish. Those who like the product and find it useful may buy a
license for a reasonable price. The only restriction is that unlicensed copies of VSFlexGrid 8.0 will display a
ComponentOne banner every time they are loaded to remind developers to license the product.

We are confident that you will like ComponentOne VSFlexGrid 8.0. If you have any suggestions or ideas for
new features that you'd like to see included in a future version, or ideas for new controls, please call us or
write:

Corporate Headquarters

ComponentOne LLC
201 South Highland Avenue
3rd Floor
Pittsburgh, PA 15206 USA
412.681.4343
412.681.4384 (Fax)

http://www.componentone.com

VSFlexGrid Controls

The ComponentOne VSFlexGrid 8.0 package consists of two ActiveX controls:

VSFlexGrid

A powerful, full-featured grid. It provides new ways to display, edit, format, organize, summarize, and print
tabular data. VSFlexGrid gives you several choices of data binding: ADO/OLEDB, DAO, bind to 2-D or 3-D
arrays, to other VSFlexGrid controls, create your own data source classes, or use the grid in unbound mode. It
will read and write grids to a compressed binary file or to a text file (compatible with Microsoft Access and
Excel). VSFlexGrid provides all the basics plus advanced features such as outline trees, sorting, cell merging,
masked editing, translated combo and image lists, and automatic data aggregation.

VSFlexString

A flexible regular expression engine. It features pattern matching as well as regular expression text matching.
VSFlexString's automatic replace capability immediately replaces all matches with the new assigned string.
Tag matching capabilities determine which parts of the string matched what parts of the pattern.

http://www.componentone.com/
http://www.componentone.com/

2 · Overview

What's New in VSFlexGrid 8.0 for Active X
This documentation was last revised on November 14, 2005.

Feature Overview
VSFlexGrid 8.0 now allows resizing of columns that are too wide to fit the control.

Export to Excel now supports the creation of shared string tables, which can save cells with up to 32k of text
(the previous limit was 256 characters when saving). SST also reduces the size of the .xls files.

Installing VSFlexGrid 8.0 for Active X
The following sections provide helpful information on installing VSFlexGrid 8.0.

SetUp Files
To install ComponentOne VSFlexGrid 8.0, use the SETUP.EXE utility that you obtained electronically, or
that was provided on the distribution CD or diskettes. When you are prompted, enter the registration key
(found on the CD case or on the diskette itself, or provided to you if you purchased the product on-line)
exactly as it is printed and click Register to complete the registration process. You may register any other
ComponentOne products for which you have purchased a registration key at this time as well.

Note: Always use the SETUP.EXE utility to install VSFlexGrid 8.0 on new computers. If you simply copy
the OCX files and register them, any applications you create on the new computer will be unlicensed, and will
display a ComponentOne banner when you run them.

The following files will be installed into your WINDOWS\HELP directory:

File Description

VSFLEX8.HLP This file contains the VSFlexGrid 8.0 online Help topics.

VSFLEX8.CNT This file contains the VSFlexGrid 8.0 online Help contents.

The following files will be installed into your WINDOWS\SYSTEM directory or, if you use Windows NT,
into your WinNT\System and WinNT\System32 directories:

File Description

VSFLEX8.OCX This file contains the VSFlexGrid 8.0 control with ADO/OLEDB data-
binding.

VSFLEX8D.OCX This file contains the VSFlexGrid 8.0 control with DAO data-binding.

VSFLEX8L.OCX This file contains the VSFlexGrid 8.0 control with no data-binding
support.

VSFLEX8U.OCX This file contains a Unicode version of the VSFlexGrid 8.0 control with
ADO/OLEDB data-binding.

VSSTR8.OCX This file contains the VSFlexString 8.0 control (This control used to be
part of the VSFLEX6.OCX file).

VSFLEX8N.OCX This file contains a Unicode version of the VSFlexGrid Light control.

VSPPG8.DLL This is the property pages file for use with the VSFlexGrid at design
time in the Visual Basic IDE.

Upgrading From Previous Versions · 3

The following folders will be created by the setup utility:

Folder Description

ComponentOne Studio Main ComponentOne folder to store ComponentOne control
Information.

ComponentOneStudio\VS
FLEXGrid Pro 8

Contains sample Visual Basic projects, utilities, And the
README.TXT file which discusses Version specific
information.

Installing Demonstration Versions
If you wish to try VSFlexGrid 8.0 or any of our other products, and do not have a registration key, follow the
steps through the installation wizard and use the default serial number.

The only difference between unregistered (demonstration) and registered (purchased) versions of our products
is that registered versions will stamp every application you compile so a ComponentOne banner will not
appear when your users run the applications.

Uninstalling VSFlexGrid 8.0

To uninstall ComponentOne VSFlexGrid 8.0, use the UNSETUP.EXE utility provided on the installation
CD or diskettes. The UNSETUP.EXE utility will remove all VSFLEX8 files from your \Windows\System
directory.

Upgrading From Previous Versions

Visual Basic projects that use VSFlexGrid 7.0 may be upgraded to VSFlexGrid 8.0 using the conversion
utility provided in the distribution package.

The conversion utility is a Visual Basic program called CONVERT, and its source code is included should you
want to see exactly what it does.

CONVERT reads the name of an existing Visual Basic project, parses the names of all forms, then makes all
the changes needed to each file. The routine saves the original files with a "bak" extension that is appended to
the original file name (for example, "Form1.frm" becomes "Form1.frm.bak").

The following list explains the changes needed to convert the project and why they are necessary:

Class names and GUIDs have changed

This affects declarations made inside .frm and .vbp files. It also affects the declarations of the OLEDragDrop
events, which include a parameter of type VSDataObject. These changes were made to avoid conflicts with
VSFlex6 projects. Both versions of the control may coexist on the same computer.

Some Event names and parameter lists have changed

The old Scroll event has been replaced by BeforeScroll and AfterScoll events.

END-USER LICENSE AGREEMENT FOR COMPONENTONE
SOFTWARE

IMPORTANT-READ CAREFULLY: This End User License Agreement (this "EULA") contains the terms
and conditions that govern your use of the SOFTWARE (as defined below) and imposes material limitations
to your rights. You should read this EULA carefully and treat it as valuable property.

4 · Overview

I. THIS EULA.

1. Software Covered by this EULA. This EULA governs your use of the ComponentOne, LLC ("C1")
software product(s) enclosed or otherwise accompanied herewith (individually and collectively, the
"SOFTWARE"). The term "SOFTWARE" includes, to the extent provided by C1: 1) any revisions,
updates and/or upgrades thereto; 2) any data, image or executable files, databases, data engines,
computer software, or similar items customarily used or distributed with computer software products;
3) anything in any form whatsoever intended to be used with or in conjunction with the
SOFTWARE; and 4) any associated media, documentation (including physical, electronic and
online) and printed materials (the "Documentation").

2. This EULA is a Legally Binding Agreement Between You and C1. If you are acting as an agent of
a company or another legal person, such as an officer or other employee acting for your employer,
then "you" and "your" mean your principal, the entity or other legal person for whom you are acting.
However, importantly, even if you are acting as an agent for another, you may still be personally
liable for violation of federal and State laws, such as copyright infringement.

By signifying your acceptance of the terms of this EULA, you intend to be, and hereby are, legally
bound to this EULA to the same extent as if C1 and you physically signed this EULA. By installing,
copying, or otherwise using the SOFTWARE, you agree to be bound by all the terms and conditions
of this EULA. If you do not agree to all of such terms and conditions, you may not install or use the
SOFTWARE. If you do not agree with any of the terms herewith and, for whatever reason,
installation has begun or has been completed, you should cancel installation or un-install the
SOFTWARE, as the case may be. Furthermore, you should promptly return the SOFTWARE to the
place of business from which you obtained it in accordance with any return policies of such place of
business. Return policies may vary among resellers; therefore you must comply with the return
policies of your supplier as you agreed at the point of purchase. If the place of business from which
you purchased the SOFTWARE does not honor a full refund for a period of thirty (30) days from the
date of purchase, you may then return the SOFTWARE directly to C1 for a refund provided that such
returns is authorized within the same thirty (30) days time period. To return the product directly to
C1, you must first obtain a Return Authorization Number by contacting C1, and you must forward to
C1 all items purchased, including the proof of purchase. The return must be postage-prepaid, and
post-marked within thirty (30) days from the proof of purchase, time being of the essence. The return
option to C1 is only available to the original purchaser of an unopened factory packaged item.

II. YOUR LICENSE TO DEVELOP AND TO DISTRIBUTE.

As provided in more detail below, this EULA grants you two licenses: 1) a license to use the SOFTWARE to
develop other software products (the "Development License"); and 2) a license to use and/or distribute the
Developed Software (the "Distribution License"). These licenses (individually and collectively, the
"Licenses") are explained and defined in more detail below.

1. Definitions. The following terms have the respective meanings as used in this EULA:

"Network Server" means a computer with one or more computer central processing units (CPU's)
that operates for the purpose of serving other computers logically or physically connected to it,
including, but not limited to, other computers connected to it on an internal network, intranet or the
Internet.

"Web Server" means a type of Network Server that serves other computers which, are specifically
connected to it through either an intranet or the Internet.

"Developed Software" means those computer software products that are developed by or through the
use of the SOFTWARE.

"Developed Web Server Software" means those Developed Software products that reside logically or
physically on at least one Web Server and are operated (meaning the computer software instruction
set is carried out) by the Web Server's central processing unit(s) (CPU).

END-USER LICENSE AGREEMENT FOR COMPONENTONE SOFTWARE · 5

"Redistributable Files" means the SOFTWARE files or other portions of the SOFTWARE that are
provided by C1 and are identified as such in the Documentation for distribution by you with the
Developed Software.

"Developer" means a human being or any other automated device using the SOFTWARE in
accordance with the terms and conditions of this EULA.

"Developer Seat License" means that each Developer using or otherwise accessing the programmatic
interface or the SOFTWARE must obtain the right to do so by purchasing a separate End User
License.

"Source Code" shall mean computer software code or programs in human readable format, such as a
printed listing of such a program written in a high-level computer language. The term "Source Code"
includes, but is not limited to, documents and materials in support of the development effort of the
SOFTWARE, such as flow charts, pseudo code and program notes.

2. Your Development License. You are hereby granted a limited, royalty-free, non-exclusive right to
use the SOFTWARE to design, develop, and test Developed Software, on the express condition that,
and only for so long as, you fully comply with all terms and conditions of this EULA.

The SOFTWARE is licensed to you on a Developer Seat License basis.

Developer Seat License basis means that you may perform an installation of the SOFTWARE for use
in designing, testing and creating Developed Software by a single Developer on one or more
computers, each with a single set of input devices, so long as 1) such computer/computers is/are used
only by one single Developer at any given time and not concurrently and, 2) the user is the primary
User to whom the license has been granted. Conversely, you may not install or use the SOFTWARE
on a computer that is a network server or a computer at which the SOFTWARE is used by more than
one Developer. You may not network the SOFTWARE or any component part of it, where it is or
may be used by more than one Developer unless you purchase an additional Development License for
each Developer. You must purchase another separate license to the SOFTWARE in order to add
additional developer seats, whether the additional developers are accessing the SOFTWARE in a
stand-alone environment or on a computer network.

The license rights granted under this Agreement may be limited to a specified number of days after
you first install the SOFTWARE unless you supply information required to license or verify your
licensed copy, as the case may be, within the time and the manner described during the SOFTWARE
setup sequence and/or in the dialog boxes appearing during use of the SOFTWARE. You may need
to verify the SOFTWARE through the use of the Internet, email or telephone; toll charges may apply.
You may need to re-verify the SOFTWARE if you modify your computer hardware. Product
verification is based on the exchange of information between your computer and C1. None of this
information contains personally identifiable information nor can they be used to identify any personal
information about you or any information you store in your computer. YOU ACKNOWLEDGE
AND UNDERSTAND THAT THERE ARE TECHNOLOGICAL MEASURES IN THE
SOFTWARE THAT ARE DESIGNED TO PREVENT UNLICENSED OR ILLEGAL USE OF
THE SOFTWARE. YOU AGREE THAT C1 MAY USE SUCH MEASURES AND YOU AGREE
TO FOLLOW ANY REQUIREMENTS REGARDING SUCH TECHNOLOGICAL MEASURES.
YOU ACKNOWLEDGE AND AGREE THAT THE SOFTWARE WILL CEASE TO
FUNCTION UNLESS AND UNTIL YOU VERIFY THE APPLICABLE SOFTWARE SERIAL
KEY.

You agree that C1 may audit your use of the SOFTWARE for compliance with these terms at any
time, upon reasonable notice. In the event that such audit reveals any use of the SOFTWARE other
than in full compliance with the terms of this EULA, you shall reimburse C1 for all reasonable
expenses related to such audit in addition to any other liabilities you may incur as a result of such
non-compliance.

In all cases, (a) you may not use C1's name, logo, or trademarks to market your Developed Software
without the express written consent of C1; (b) you must include the following C1 copyright notice in

6 · Overview

your Developed Software documentation and/or in the "About Box" of your Developed Software,
and wherever the copyright/rights notice is located in the Developed Software (“Portions Copyright
© ComponentOne, LLC 1991-2005. All Rights Reserved.”); (c) you agree to indemnify, hold
harmless, and defend C1, its suppliers and resellers, from and against any claims or lawsuits,
including attorney's fees that may arise from the use or distribution of your Developed Software; (d)
you may use the SOFTWARE only to create Developed Software that is significantly different than
the SOFTWARE.

3. Your Distribution License.

License to Distribute Developed Software. Subject to the terms and conditions in this EULA, you
are granted the license to use and to distribute Developed Software on a royalty-free basis, provided
that the Developed Software incorporates the SOFTWARE as an integral part of the Developed
Software in machine-language compiled format (customarily an ".exe", or ".dll", etc.). You may not
distribute, bundle, wrap or subclass the SOFTWARE as Developed Software which, when used in a
"designtime" development environment, exposes the programmatic interface of the SOFTWARE.
You may distribute, on a royalty-free basis, Redistributable Files with Developed Software only. You
may not add or transfer the SOFTWARE license key to the computer where the Developed Software
is installed. Users of the Developed Software may not use the SOFTWARE or the Redistributable
Files, directly or indirectly, for development purposes. In particular, if you create a control (or user
control) using the SOFTWARE as a constituent control, you are not licensed to distribute the control
you created with the SOFTWARE to users for development purposes.

4. Specific Product Limitations. Notwithstanding anything in this EULA to the contrary, if the license
you have purchased is for any of the following products, then the following additional limitations will
apply:

a. ComponentOne Reports for .NET Designer Edition. ComponentOne Reports for .NET Designer
Edition includes at least: 1) one dynamic link library file (c1.win.c1reportdesigner.dll) known as
C1ReportDesigner Component, 2) one executable file (ReportDesigner.exe) known as
C1ReportDesigner Application and, 3) the Source Code of the C1ReportDesigner Application. The
C1ReportDesigner Component is subject to the general terms and restrictions set forth in this EULA.
The C1ReportDesigner Application is an executable file used to design and prepare reports; the
C1ReportDesigner Application may be distributed, free of royalties, only in conjunction with the
Developed Software.

C1 hereby also grants you the right to use and to modify the C1ReportDesigner Application Source
Code to create derivative works that are based on the licensed Source Code. You may distribute such
derivative works, solely in object code format and exclusively in conjunction with and/or as a part of
the Developed Software. You are expressly not granted the right to distribute, disclose or otherwise
make available to any third party the licensed Source Code, any portion, modified version or
derivative work thereof, in source code format.

C1 shall retain all right, title and interest in and to the licensed Source Code, and all C1 updates,
modifications or enhancements thereof. Nothing herein shall be deemed to transfer any ownership or
title rights in and to the licensed Source Code from C1 to you.

SOURCE CODE IS LICENSED TO YOU AS IS. C1 DOES NOT AND SHALL NOT PROVIDE
YOU WITH ANY TECHNICAL SUPPORT FOR YOUR SOURCE CODE LICENSE.

b. VSView Reporting Edition (ActiveX). VSView Reporting Edition includes at least one executable
file listed as “VSRptX.exe” (where X indicates the version number i.e.7,8, etc.), known as
“Designer.” The file "VSRptX.exe”, or any upgrade or future versions of the Designer, are subject to
the restrictions set forth in this EULA and may not be distributed with your Developed Software or in
any other way.

c. Studio Products. You may not share the component parts of the Studio Products licensed to you
with other Developers, nor may you allow the use and/or installation of such components by other
Developers.

END-USER LICENSE AGREEMENT FOR COMPONENTONE SOFTWARE · 7

5. Updates/Upgrades; Studio Subscription. Subject to the terms and conditions of this EULA, the
Licenses are perpetual. Updates and upgrades to the SOFTWARE may be provided by C1 from time-
to-time, and, if so provided by C1, are provided upon the terms and conditions offered at that time by
C1 in its sole discretion. C1 may provide updates and upgrades to the SOFTWARE for free or for
any charge, at any time or never, and through its chosen manner of access and distribution, all in C1's
sole discretion.

C1 licenses certain of its separately-licensed products bundled together in a product suite, called the
C1 "Studio" product line (the "Studio Products"). The exact separately-licensed products that are
bundled into the Studio Products may change from time-to-time in C1's sole discretion. If the
SOFTWARE is identified as a C1 "Studio" product, then the SOFTWARE is one of the Studio
Products. The SOFTWARE and the Studio Products are revised from time-to-time (meaning, for
example, revised with updates, upgrades and, in the case of Studio products, some times changes to
the mix of products included in the bundle). To receive any such revisions to the SOFTWARE or the
Studio Products, as the case may be, you must have a valid SOFTWARE license or a valid Studio
subscription. Together with the Licenses, the original purchaser is granted a one-year subscription
from the date of purchase. Upon expiration, you must renew your license subscription to continue to
be entitled to receive SOFTWARE and/or the Studio Products revisions as the case may be.

6. Serial Number. With your license, you will be issued a unique serial number (the "Serial Number")
used for the activation of the SOFTWARE. The Serial Number is subject to the restrictions set forth
in this EULA and may not be disclosed or distributed either with your Developed Software or in any
other way. The disclosure or distribution of the Serial Number constitutes a breach of this EULA, the
effect of which shall be the immediate termination and revocation of all the rights granted herein.

7. Evaluation Copy. If you are using an "evaluation copy", specifically designated as such by C1 on its
website or elsewhere, then the Licenses are limited as follows: a) you are granted a license to use the
SOFTWARE for a period of thirty (30) days counted from the day of installation (the "Evaluation
Period"); b) upon completion of the Evaluation Period, you shall either i) delete the SOFTWARE
from the computer containing the installation, or you may ii) obtain a paid license of the
SOFTWARE from C1 or any of its resellers; and c) any Developed Software developed with the
Evaluation Copy may not be distributed or used for any commercial purpose.

III. INTELLECTUAL PROPERTY.

1. Copyright. You agree that all right, title, and interest in and to the SOFTWARE (including, but not
limited to, any images, photographs, animations, video, audio, music, text, and “applets”
incorporated into the SOFTWARE), and any copies of the SOFTWARE, and any copyrights and
other intellectual properties therein or related thereto are owned exclusively by C1, except to the
limited extent that C1 may be the rightful license holder of certain third-party technologies
incorporated into the SOFTWARE. The SOFTWARE is protected by copyright laws and
international treaty provisions. The SOFTWARE is licensed to you, not sold to you. C1 reserves all
rights not otherwise expressly and specifically granted to you in this EULA.

2. Backups. You may make a copy of the SOFTWARE solely for backup or archival purposes.
Notwithstanding the foregoing, you may not copy the printed Documentation.

3. General Limitations. You may not reverse engineer, decompile, or disassemble the SOFTWARE,
except and only to the extent that applicable law expressly permits such activity notwithstanding this
limitation.

4. Software Transfers. You may not rent or lease the SOFTWARE. You may permanently transfer all
of your rights under the EULA, provided that you retain no copies, that you transfer all the
SOFTWARE (including all component parts, the media and printed materials, any updates, upgrades,
this EULA and, if applicable, the Certificate of Authenticity), and that the transferee agrees to be
bound by the terms of this EULA. If the SOFTWARE is an update or upgrade, any transfer must
include all prior versions of the SOFTWARE.

8 · Overview

5. Termination. Without prejudice to any other rights it may have, C1 may terminate this EULA and
the Licenses if you fail to comply with the terms and conditions contained herein. In such an event,
you must destroy all copies of the SOFTWARE and all of its component parts.

6. Export Restrictions. You acknowledge that the SOFTWARE is of U.S. origin. You acknowledge
that the license and distribution of the SOFTWARE is subject to the export control laws and
regulations of the United States of America, and any amendments thereof, which restrict exports and
re-exports of software, technical data, and direct products of technical data, including services and
Developed Software. You agree that you will not export or re-export the SOFTWARE or any
Developed Software, or any information, documentation and/or printed materials related thereto,
directly or indirectly, without first obtaining permission to do so as required from the United States of
America Department of Commerce's Bureau of Export Administration ("BXA"), or other appropriate
governmental agencies, to any countries, end-users, or for any end-uses that are restricted by U.S.
export laws and regulations, and any amendments thereof, which include, but are not limited to:
Restricted Countries, Restricted End-Users, and Restricted End-Uses.

These restrictions change from time to time. You represent and warrant that neither the BXA nor any
other United States federal agency has suspended, revoked or denied your export privileges. C1
acknowledges that it shall use reasonable efforts to supply you with all reasonably necessary
information regarding the SOFTWARE and its business to enable you to fully comply with the
provisions of this Section. If you have any questions regarding your obligations under United States
of America export regulations, you should contact the Bureau of Export Administration, United
States Department of Commerce, Exporter Counseling Division, Washington DC. U.S.A. (202) 482-
4811, http://www.bxa.doc.gov.

7. U.S. Government Restricted Rights. The SOFTWARE and documentation are provided with
RESTRICTED RIGHTS. You will comply with any requirements of the Government to obtain such
RESTRICTED RIGHTS protection, including without limitation, the placement of any restrictive
legends on the SOFTWARE, and any license agreement used in connection with the distribution of
the SOFTWARE. Manufacturer is ComponentOne, LLC, 201 South Highland Avenue , 3rd Floor,
Pittsburgh, Pennsylvania 15206 USA. For solicitations issued by the Government on or after
December 1, 1995 and the Department of Defense on or after September 29, 1995, the only rights
provided in the software and documentation provided herein shall be those contained in this EULA.
Under no circumstances shall C1 be obligated to comply with any Governmental requirements
regarding the submission of or the request for exemption from submission of cost or pricing data or
cost accounting requirements. For any distribution of the SOFTWARE that would require
compliance by C1 with the Government's requirements relating to cost or pricing data or cost
accounting requirements, you must obtain an appropriate waiver or exemption from such
requirements for the benefit of C1 from the appropriate Government authority before the distribution
and/or license of the SOFTWARE to the Government.

IV. WARRANTIES AND REMEDIES.

1. Limited Warranty. C1 warrants that the original media, if any, are free from defects for ninety (90)
days from the date of delivery of the SOFTWARE. C1 also warrants that: (i) it has the full power to
enter into this Agreement and grant the license rights set forth herein; (ii) it has not granted and will
not grant any rights in the Software to any third party which grant is inconsistent with the rights
granted to you in this Agreement; and (iii) the Software does not and will not infringe any trade
secret, copyright, trademark or other proprietary right held by any third party and does not infringe
any patent held by any third party. EXCEPT AS OTHERWISE PROVIDED IN THE
PRECEDING SENTENCE, AND TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, C1 EXPRESSLY DISCLAIMS ANY WARRANTY FOR THE
SOFTWARE, DOCUMENTATION AND ANYTHING ELSE PROVIDED BY C1 HEREBY
AND C1 PROVIDES THE SAME IN “AS IS” CONDITION WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK ARISING OUT OF USE OR

http://www.bxa.doc.gov/

END-USER LICENSE AGREEMENT FOR COMPONENTONE SOFTWARE · 9

PERFORMANCE OF THE SOFTWARE AND DOCUMENTATION REMAINS WITH YOU.
THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE
OTHERS WHICH VARY FROM STATE TO STATE.

2. Limited Remedy. C1 PROVIDES NO REMEDIES OR WARRANTIES, WHETHER EXPRESS
OR IMPLIED, FOR ANY SAMPLE APPLICATION CODE, REDISTRIBUTABLE FILES,
TRIAL VERSION AND THE NOT FOR RESALE VERSION OF THE SOFTWARE. ANY
SAMPLE APPLICATION CODE, TRIAL VERSION AND THE NOT FOR RESALE VERSION
OF THE SOFTWARE ARE PROVIDED “AS IS”.

C1's entire liability and your exclusive remedy under this EULA shall be, at C1's sole option, either
(a) return of the price paid for the SOFTWARE; (b) repair the SOFTWARE through updates
distributed online or otherwise in C1's discretion; or (c) replace the SOFTWARE with SOFTWARE
that substantially performs as described in the SOFTWARE documentation, provided that you return
the SOFTWARE in the same manner as provided in Section I.2 for return of the SOFTWARE for
non-acceptance of this EULA. Any media for any repaired or replacement SOFTWARE will be
warranted for the remainder of the original warranty period or thirty (30) days, whichever is longer.
THESE REMEDIES ARE NOT AVAILABLE OUTSIDE OF THE UNITED STATES OF
AMERICA. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO
EVENT SHALL C1 BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFIT, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY
LOSS) ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE, EVEN IF C1
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
STATES/JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES IN CERTAIN CASES,
THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

V. MISCELLANEOUS.

1. This is the Entire Agreement. This EULA (including any addendum to this EULA included with the
SOFTWARE) is the final, complete and exclusive statement of the entire agreement between you and
C1 relating to the SOFTWARE. This EULA supersedes any prior and contemporaneous proposals,
purchase orders, advertisements, and all other communications in relation to the subject matter of this
EULA, whether oral or written. No terms or conditions, other than those contained herein, and no
other understanding or agreement which in any way modifies these terms and conditions, shall be
binding upon the parties unless entered into in writing executed between the parties, or by other non-
oral manner of agreement whereby the parties objectively and definitively act in a manner to be bound
(such as by continuing with an installation of the SOFTWARE, etc.). Employees, agents and other
representatives of C1 are not permitted to orally modify this EULA.

2. You Indemnify C1. You agree to indemnify, hold harmless, and defend C1 and its suppliers and
resellers from and against any and all claims or lawsuits, including attorney's fees, which arise out of
or result from your distribution of your Developed Software, your Developed Web Server Software or
from your breach of any of the terms and conditions of this EULA.

3. Interpretation of this EULA. If for any reason a court of competent jurisdiction finds any provision
of this EULA, or any portion thereof, to be unenforceable, that provision of this EULA will be
enforced to the maximum extent permissible so as to effect the intent of the parties, and the remainder
of this EULA will continue in full force and effect. Formatives of defined terms shall have the same
meaning of the defined term. Failure by either party to enforce any provision of this EULA will not
be deemed a waiver of future enforcement of that or any other provision. Except as otherwise
required or superseded by law, this EULA is governed by the laws of the Commonwealth of
Pennsylvania, without regard to its conflict of laws principles. The parties consent to the personal
jurisdiction and venue of the Commonwealth of Pennsylvania, in the County of Allegheny, and agree
that any legal proceedings arising out of this EULA shall be conducted solely in such
Commonwealth. If the SOFTWARE was acquired outside the United States, then local law may
apply.

10 · Overview

Technical Support
ComponentOne VSFlexGrid is developed and supported by ComponentOne LLC, a company formed by the
merger of APEX Software Corporation and VideoSoft. You can obtain technical support using any of the
following methods:

ComponentOne Web site

The ComponentOne Web site at www.componentone.com provides a wealth of information and software
downloads for VSFlexGrid users, including:

• Descriptions of the various support options available through the ComponentOne Service Team.

• Answers to frequently asked questions (FAQ's) about our products, organized by functionality. Please
consult the FAQ's before contacting us directly, as this can save you time and also introduce you to
other useful information pertaining to our products.

• Free product updates, which provide you with bug fixes and new features.

ComponentOne HelpCentral
ComponentOne HelpCentral is the new online resource for Visual Studio developers and Help authors. Visit
HelpCentral to get information on ComponentOne products, view online demos, get Tech Tips and answers to
frequently asked questions (FAQ's), search the ComponentOne knowledgebase and more!

Internet e-mail
For technical support through the Internet, e-mail us at:

support.vsflex@componentone.com

To help us provide you with the best support, please include the following information when contacting
ComponentOne:

• Your ComponentOne product serial number.

• The version and name of your operating system.

• Your development environment and its version.

For more information on technical support, go to:

www.componentone.com/support

Peer-to-Peer newsgroup

ComponentOne also sponsors peer-to-peer newsgroups for VSFlexGrid users. ComponentOne does not offer
formal technical support in this newsgroup, but instead sponsors it as a forum for users to post and answer
each other's questions regarding VSFlexGrid. However, ComponentOne may monitor the newsgroups to
ensure accuracy of information and provide comments when necessary. You can access the newsgroup from
the ComponentOne Web site at http://helpcentral.componentone.com/Newsgroups.aspx.

Documentation
ComponentOne documentation is available with each of our products in HTML Help, Microsoft Help 2.0
(.NET, ASP.NET and Mobile Device products only), and PDF format. All of the PDFs are also available on
ComponentOne HelpCentral. If you have suggestions on how we can improve our documentation, please
email the Documentation team. Please note that e-mail sent to the Documentation team is for documentation
feedback only. Technical Support and Sales issues should be sent directly to their respective departments.

http://www.componentone.com/
http://helpcentral.componentone.com/
mailto:support.vsflex@componentone.com
http://www.componentone.com/support
http://helpcentral.componentone.com/Newsgroups.aspx
http://helpcentral.componentone.com/Documentation.aspx
mailto:documentation@componentone.com
mailto:documentation@componentone.com
http://www.componentone.com/pages.aspx?pagesid=30&Panelindex=5
mailto:sales@componentone.com

Redistributable Files · 11

Redistributable Files
ComponentOne VSFlexGrid is developed and published by ComponentOne LLC. You may use it to develop
applications in conjunction with Microsoft Visual Studio or any other programming environment that enables
the user to use and integrate the control(s). You may also distribute, free of royalties, the following
Redistributable Files with any such application you develop to the extent that they are used separately on a
single CPU on the client/workstation side of the network:

• VSFlex8.ocx

• VSFlex8d.ocx

• VSFlex8L.ocx

• VSFlex8U.ocx

• VSSTR8.ocx

• VSFlex8N.ocx

Site licenses are available for groups of multiple developers. Please contact Sales@ComponentOne.com for
details.

Note: When shipping your applications, we strongly suggest that you use a professional installation utility
such as the Wise Installation System®, InstallShield®, or the setup wizard that ships with Microsoft Visual
Basic 5.0 and later.

VSFlexGrid is a dependency-free control and does not require any additional DLLs in order to run.

Adding the VSFlexGrid 8.0 Component to the Toolbox

To use the VSFlexGrid 8.0 components, they must be added to the Visual Studio Toolbox:

Open the Visual Basic IDE (Microsoft's Integrated Development Environment). Make sure the Toolbox is
visible (if necessary, select Toolbox in the View menu).

To set up the VSFlexGrid 8.0 components to appear on their own tab, right-click anywhere in the Toolbox
and select Add Tab from the context menu. Enter a tab name, for example, “FlexGrid 8”, in the dialog box.
Select the new tab. Right-click the gray area under that tab and select Components from the context menu.
The Components dialog box opens.

In the Components dialog box, find and select ComponentOne FlexGrid 8.0 Control. Click OK.

mailto:sales@componentone.com

VSFlexGrid Introduction · 13

VSFlexGrid Introduction

The VSFlexGrid control is a powerful, full-featured grid. It provides new ways to display, edit, format,
organize, summarize, and print tabular data.

The VSFlexGrid control was designed to be used either in unbound mode, where the grid "owns" the data, or
in data-bound mode, where the grid is used to view and edit data that that belongs to a database.

VSFlexGrid 8.0 ships with three versions of the VSFlexGrid control. Each version has its own OCX file and
supports a different type of data binding:

OCX File Description

VSFLEX8.OCX This version provides support for ADO/OLEDB data Binding, the
latest data binding standard from Microsoft. It requires ADO to be
installed on the Computer.

VSFLEX8D.OCX This version provides support for DAO data binding, the more
traditional type of data binding supported by Visual Basic's built-in
Data Control.

VSFLEX8L.OCX This version has no support for data-binding. Use it when your
application does not require data-binding and you want to reduce the
number of components your application depends on.

VSFLEX8U.OCX This is a Unicode version that provides support for ADO/OLEDB data
binding. It only runs on Windows NT systems.

VSFLEX8N.OCX This file contains a Unicode version of the VSFlexGrid Light control.

The following sections walk you through the main features in the VSFlexGrid control:

Basic Operations (page 14)

Describes how to set up the grid dimensions and layout, and the concepts of "current cell" and "selection".

Editing Cells (page 15)

Describes how to implement simple text editing, drop-down lists and combo lists, cell buttons, editing masks,
and data validation.

Formatting Cells (page 16)

Describes how to customize the appearance of the grid by formatting numbers, dates, and boolean values, or
by changing fonts, colors, alignment, and pictures for individual cells or ranges.

Merging Cells (page 19)

Describes how to change the grid display so that cells with similar contents are merged, creating "grouped"
views that highlight relationships in the data.

Outlining and Summarizing (page 17)

Describes how to add subtotals to grids and how to build outline trees.

Data Binding (ADO and DAO) (page 22)

Discusses the basic aspects of ADO/OLEDB and DAO data-binding.

14 · VSFlexGrid Introduction

Other types of Data Binding (page 23)

Discusses how you can bind the VSFlexGrid control to arrays of Variants, to other VSFlexGrid controls, or to
custom data sources that you can implement yourself.

Saving, Loading, and Printing (page 21)

Describes how you can save the contents or formatting of a grid and re-load it later, or exchange grid data with
other applications such as Microsoft Access and Excel. This section also shows how you can print grids.

Using VSFlexGrid in Visual C++ (page 24)

Shows useful techniques and programming tips on how to use the VSFlexGrid control in Visual C++, both in
MFC and in ATL projects.

Using VSFlexGrid in Visual J++ (page 30)

Shows programming tips on how to use the VSFlexGrid control in Visual J++.

VSFlexGrid Property Groups (page 32)

Presents a map of the main VSFlexGrid properties cross-referenced by function.

Basic Operations

The VSFlexGrid control has two properties that determine its dimensions: Rows and Cols. When used in
bound mode, these properties are set automatically based on how much data is available on the data source. In
unbound mode, you can set them to arbitrary values.

There are two basic types of rows and columns: fixed and scrollable. Fixed rows remain on the top of the grid
when the user scrolls the grid vertically, and fixed columns remain on the left of the grid when the user scrolls
the grid horizontally. Fixed cells are useful for displaying row and column header information. They cannot be
selected or edited by the user. The number of fixed rows and columns is set by the FixedRows and FixedCols
properties.

The AllowUserResizing property allows the user to resize rows and columns by dragging the edges of the
fixed cells. The ExplorerBar property allows the user to move and sort columns by clicking and dragging the
header rows.

Cursor
The grid has a cursor, which is the cell defined by the Row and Col properties. The cursor displays a focus
rectangle while the grid is active. The user may move the cursor with the keyboard or the mouse, and edit the
contents of the cell if the grid is editable. Changing the Row and Col properties in code also moves the cursor.

The Row property may be set to values between zero and Rows - 1 to select a row, or to -1 to hide the cursor.
The Col property may be set to values between zero and Cols - 1 to select a column, or to -1 to hide the cursor.

Setting the Row and Col properties does not ensure that the new cursor is visible. For that, use the ShowCell
method.

Selection
The grid also has a selection, which is a rectangular range of cells defined by two opposing corners: the cursor
(Row, Col properties) and the cell defined by the RowSel and ColSel properties. The user may change the
selection using the keyboard or the mouse. Changing the RowSel and ColSel properties in code also changes
the selection.

When the Row or Col properties change, RowSel and ColSel are automatically reset and the selection
collapses into a single cell, the cursor. To create selection in code, either set RowSel and ColSel after setting
Row and Col, or use the Select method.

Editing Cells · 15

Several grid properties apply to the cursor or to the selection, depending on the setting of the FillStyle
property. These include Text and all properties with names that start with Cell (CellBackColor,
CellForeColor, etc.)

Variations
For some applications, only a cursor makes sense, and no selection. In these cases, set the AllowSelection
property to False. This will prevent the user from extending the selection with the keyboard or the mouse.

Some applications require selections to be made row by row, list-box style. In these cases, set the
SelectionMode property to flexSelectionListBox (3) and retrieve the selected status for each row through the
IsSelected() property.

Editing Cells

The main property related to editing is the Editable property. You must set it to a non-zero value to allow
users to edit the contents of the grid. The flexEDKbd (1) setting allows users to start editing a cell by typing into
it. The flexEDKbdMouse (2) setting also allows users to double-click a cell to start editing it.

Editing Text, Lists, and Combos
Once you set the Editable property to a non-zero value, users may edit text by selecting a cell and then typing
into it. This is the most basic type of editing.

Often, the user's choices will be limited to a list of possible values. In these cases, you can let them select the
choice from a drop-down list. To do this, build a string containing all the choices separated by pipe characters
(for example, "True|False|Don't know") and assign it to the ColComboList() property of the column for
which the choices apply. Each column may have a different list. After this, the grid will display an arrow next
to the cell. When the user clicks the arrow or presses a key, the list will drop down and offer the choices
available.

A third option is one where there are typical values for a cell, but the user should be allowed to type something
else as well. This can be accomplished with drop-down combos, a combination of text box and drop-down
list. To create combos, just start the choice list with a pipe character (for example, "|True|False|Don't
know"), then assign it to the ColComboList as before.

In some cases, cells in the same column may need different lists. For example, a property list may show
properties on the first column and their values on the second. The values depend on the property, so valid
choices change from one row to the next. In these cases, you should trap the BeforeEdit event and set the
ComboList property to the appropriate list for the current cell.

Cell Buttons
Certain types of cell may require sophisticated editors other than text boxes or choice lists. For example, if a
cell contains a file name or a color, it should be edited with a dialog box. In these cases, set the ColComboList
property to an ellipsis ("…"). The control will display a button next to the cell and will fire the
CellButtonClick event when the user clicks on it. You can trap the event, show the dialog, and update the
cell's contents with the user's selection.

Masks
The VSFlexGrid control supports masked editing, where an input mask is used to automatically validate the
input as the user types. This is done through the ColEditMask property, which takes a string that defines what
characters are valid for each input position. Masks may be used with regular text fields and with drop-down
combo fields.

16 · VSFlexGrid Introduction

Mask strings have two types of characters: literal characters, which become part of the input, and template
characters, which serve as placeholders for characters belonging to specific categories (e.g., digits or
alphabetic). For example, you could use a mask like "(999) 999-9999" for entering phone numbers (the digit
"9" is a placeholder that stands for any digit). For details on the syntax used to build the mask strings, see the
EditMask property in the control reference section.

If different cells in the same column need different masks, trap the BeforeEdit event and set the EditMask
property to an appropriate value for the current cell.

Validation
In many cases, edit masks alone are not enough to ensure that the data enters by the user was valid. For
example, a mask won't let you specify a range of possible values, or validate the current cell based on the
contents of another cell. In these cases, trap the ValidateEdit event and see if the value contained in the
EditText property is a valid entry for the current cell (at this point, the Text property still has the original value
in it). If the input is invalid, set the Cancel parameter to True and the grid will remain in edit mode until the
user types a valid entry.

Controlling Edit Mode
You can determine whether the grid is in edit mode by reading the value of the EditWindow property. If this
property returns zero, the grid is not in edit mode. If it returns a non-zero value, the grid is in edit mode and
the value returned is the handle of the edit window.

You can force the grid into edit mode at any time using the EditCell method. You can even allow the user to
edit fixed cells by selecting them in code (using the Select method) and then invoking the EditCell method.
You can cancel the edit mode by selecting the current cell (e.g., .Select .Row, .Col).

Formatting Cells

One of the main strengths of the VSFlexGrid control is the ability to customize almost every aspect of the
appearance of the entire grid and individual cells. There are properties that affect the whole grid, such as Font,
BackColor, ForeColor, and GridLines. Others are specific to rows and columns, such as RowHeight(),
RowHidden(), ColWidth(), ColAlignment(), and ColFormat(). Finally, the Cell property allows you to
format arbitrary ranges and individual cells.

Formatting cell contents
The ColFormat() property controls how cell contents are formatted for display. It takes as a parameter a
format string similar to the one used by Visual Basic's Format function. For example, you may set
ColFormat() to "#.###,##", "Currency", or "Long Date". This property does not affect the cell's contents,
only the way it is displayed.

You may also use check boxes to display boolean values. To do this, set the ColDataType() property to
flexDTBoolean. The grid will automatically display check boxes and handle them if the grid is editable.

Formatting cell appearance
By default, the VSFlexGrid control will align strings to the left and numbers and dates to the right of each
column. You may override this default using the ColAlignment() property.

For the ultimate in cell formatting control, use the Cell property. This property allows you to set or retrieve
every aspect of a range's formatting. You may set a cell's contents, font, back color, fore color, alignment, and
picture, among other options.

If you need even more control over the appearance of the cells, use the OwnerDraw property and the
DrawCell event to paint the cell yourself, using Windows API calls.

Outlining and Summarizing · 17

Conditional formatting
To format cells based on their contents, trap the CellChanged event and apply the formatting using the Cell
property. For example, you can make negative values red and bold or give values above a certain threshold a
blue background.

Outlining and Summarizing
The VSFlexGrid control has methods and properties that allow you to summarize data and display it in a
hierarchical manner. To summarize data, use the Subtotal method. To display hierarchical views of the data,
use the OutlineBar and OutlineCol properties.

Creating Subtotals
The Subtotal method adds subtotal rows that contain aggregate data for the regular (data) rows.

Subtotal supports hierarchical aggregates. For example, you may call it several times in a row using different
parameters to get sales figures by Product, Region, and Salesperson. You may also calculate aggregates other
than sums (e.g., averages or percentages) and format the subtotal rows to highlight them.

For example, assuming you had a VSFlexGrid control named fg containing Product, Region, Salesperson,
and Sales information, you could summarize it with the following code:

 ' clear existing subtotals
 fg.Subtotal flexSTClear

 ' get an Grand total (use 1 instead of columns index)
 fg.Subtotal flexSTSum, -1, 3, , 1, vbWhite, True

 ' total per Product (column 0)
 fg.Subtotal flexSTSum, 0, 3, , vbRed, vbWhite, True

 ' total per Region (column 1)
 fg.Subtotal flexSTSum, 1, 3, , vbBlue, vbWhite, True

 ' show an OutlineBar on column 0
 fg.OutlineBar = flexOutlineBarSimple

After executing this code, the grid would look like this:

18 · VSFlexGrid Introduction

The subtotal rows created by the Subtotal method differ from regular rows in three aspects:

1. Subtotal rows can be automatically removed by invoking the Subtotal method with the flexSTClear
parameter. This is useful to provide dynamic views of the data, where the user may move columns
and re-sort the data, making it necessary to recalculate the subtotals.

2. Subtotal rows can be used as nodes in an outline, allowing you to collapse and expand groups of rows
to present an overview of the data or to reveal its details. To see the outline tree, you need to set the
OutlineBar property to a non-zero value. Because the outline is a hierarchical structure, each row has
a level that defines how deep into the outline the node is. This level can be set or retrieved through the
RowOutlineLevel() property.

3. When the grid is bound to a data source, the subtotal rows do not correspond to actual data. Thus, if
you navigate the recordset using the MoveFirst and MoveNext methods, the subtotal rows will be
skipped.

The picture above shows the subtotals and the outline tree next to the data on the first column. The outline
tree allows users to collapse and expand sections of the grid by clicking on the nodes, and can be very useful to
display other types of data, not only aggregates.

Creating Outline Trees
To create outline trees without using the Subtotal method, you need to follow these steps:

1. Populate the grid.

2. Turn some rows into outline nodes by setting their IsSubtotal() property to True.

3. Set each node's level in the hierarchy by setting their RowOutlineLevel() property. Higher values
mean the node is deeper (more indented) into the outline tree.

For example, the code below creates a custom (and somewhat random) outline:

 ' initialize grid
 fg.Rows = 1: fg.FixedRows = 1
 fg.Cols = 3: fg.FixedCols = 0
 fg.OutlineBar = flexOutlineBarSimpleLeaf
 fg.GridLines = flexGridNone
 fg.FormatString = "Heading |Date |Time "

 ' fill the control with data
 Dim i%, j%
 While fg.Rows < 150

 ' decide randomly whether to add a subtotal
 If fg.Rows <= 2 Or Rnd() < 0.4 Then

 ' add an item, make it a subtotal
 fg.AddItem "Branch Level " & i
 fg.IsSubtotal(fg.Rows - 1) = True
 fg.RowOutlineLevel(fg.Rows - 1) = i
 fg.Cell(flexcpPicture, fg.Rows - 1, 0) = imgFolder

 j = I

 ' decide whether to go deeper or shallower
 If Rnd() < 0.5 And i < 10 Then
 i = i + 1
 ElseIf Rnd() < 0.5 And i > 0 Then
 i = i - 1
 End If

 ' add a regular item

Merging Cells · 19

 Else
 fg.AddItem "Data on Level " & j & vbTab & _
 Date & vbTab & Time
 fg.Cell(flexcpPicture, fg.Rows - 1, 0) = imgItem
 End If
 Wend

 ' do an autosize
 fg.AutoSize 0, 1, , 300

This code creates a grid that looks like this:

Merging Cells

The VSFlexGrid control allows you to merge cells, making them span multiple rows or columns. This
capability can be used to enhance the appearance and clarity of the data displayed on the grid. The effect of
these settings is similar to the HTML "<ROWSPAN>" and "<COLSPAN>" tags.

Cell merging is controlled by three properties: MergeCells, MergeRow(), and MergeCol(). MergeCells
enables cell merging for the entire grid. After it is set to a non-zero value, rows that have MergeRow() set to
True will be allowed to merge across and columns that have MergeCol() set to True will be allowed to merge
down. The merging will occur if adjacent cells contain the same non-empty string. The MergeCells property
has several settings that allow you to restrict cell merging in different ways. For details on how to use it, see the
MergeCells property in the control reference section.

Note that there is no method to force a pair of cells to merge. The merging is done automatically based on the
cell contents. This makes it easy to provide merged views of sorted data, where values in adjacent rows present
repeated data.

Cell merging has several possible uses. For example, you can use it to create merged table headers, merged
data views, or grids where the text spills into adjacent columns.

Merged table headers
To create merged table headers, you must start by setting the MergeCells property to flexMergeFixedOnly.
Then, designate the rows and columns that you want to merge using the MergeRow(), and MergeCol()
properties. Finally, assign the text to the header cells so that the cells you want to merge have the same
contents.

The code below shows an example:

 Private Sub Form_Load()
 Dim i%

 ' initialize control
 fg.WordWrap = True
 fg.Cols = 9

20 · VSFlexGrid Introduction

 fg.FixedRows = 2
 fg.MergeCells = flexMergeFixedOnly

 ' create row headers
 fg.MergeRow(0) = True
' four cells, will merge
 fg.Cell(flexcpText, 0, 1, 0, 4) = "North"
' four cells, will merge
fg.Cell(flexcpText, 0, 5, 0, 8) = "South"
For i = 1 To 4
 fg.Cell(flexcpText, 1, i, 1) = "Qtr " & i
 fg.Cell(flexcpText, 1, i + 3, 1) = "Qtr " & i
 Next

 ' create column header
 fg.MergeCol(0) = True
' two cells, will merge
 fg.Cell(flexcpText, 0, 0, 1, 0) = "Sales by " & _ "Product"
 ' align and autosize the cells
 fg.Cell(flexcpAlignment, 0, 0, 1, fg.Cols - 1) _ =
flexAlignCenterCenter
 fg.AutoSize 1, fg.Cols - 1, False, 300

 End Sub

This is the result:

Merged data views
To create merged data views, you start by populating the grid. For example, you may bind it to a database.
Then, set the MergeCells property to flexMergeRestrictAll and MergeCol(-1) to True. Notice that the -1 index
means "apply this setting to all columns".

The code below show an example. It uses an ADO/OLEDB VSFlexGrid control named fg and a Microsoft
ADO Data Control named Adodc1:

Private Sub Form_Load()

 ' create the data source
 Adodc1.ConnectionString = "DSN=NorthWind"
 Adodc1.CommandType = adCmdText
 Adodc1.RecordSource = "SELECT Country, City, " & "CompanyName FROM
Customers;"
 Adodc1.Refresh
 Adodc1.Recordset.Sort = "Country, City"

 ' populate the grid
 Set fg.DataSource = Adodc1

 ' activate merging for all columns
 fg.MergeCells = flexMergeRestrictAll
 fg.MergeCol(-1) = True
End Sub

Saving, Loading, and Printing · 21

This is the result:

Spilling Text
The MergeCells property has one setting that operates differently from the others. The flexMergeSpill setting
causes text that is too long to fit in a cell to spill into empty adjacent cells. This setting does not require you to
set the MergeRows() or MergeCols() properties.

For example, the picture below shows what a grid might look like when MergeCells is set to flexMergeSpill and
the user types entries of varying lengths:

Saving, Loading, and Printing
The VSFlexGrid control has methods that allow you to read and write grids to disk files using the LoadGrid
and SaveGrid methods, or print them using the PrintGrid method. When saving grids to files, you have
several options: save the formatting, the data, or both; use text or binary files; or archive several grids into a
single compressed file.

Saving Grids

The SaveGrid method allows you to save a grid to a disk file. The SaveGrid method is very fast and flexible.
It has arguments that allow you to save the whole grid, only the data, or only the formatting. If you save the
whole grid, you can restore it later and it will look exactly as it did when you saved it. Save only the data to get

22 · VSFlexGrid Introduction

a more compact file. Or save only the formatting to get a template that you can load into other grids without
affecting their data.

You may also save grids into comma or tab-delimited text files, which allows you to load them into other
applications such as Microsoft Excel or Access. For added flexibility, you can use the ClipSeparators property
to select arbitrary delimiters, such as pipes or semi-colons. Saving in text mode saves only the grid data.

Loading Grids

The LoadGrid method allows you to load grid files that were saved with the SaveGrid method. You can also
use it to import data from text files created by other applications such as Microsoft Excel or Access.

Creating Archives

Many applications need to save several grids (or tables) rather than one. In these cases, the Archive method
allows you to consolidate many files, optionally compressing them, into a single file. The Archive method has
parameters that allow you to add, remove, or extract files from the archive. The ArchiveInfo property allows
you to extract information from an archive file, such as the number of files in the archive, their names, sizes,
compressed sizes, and dates. Archive and ArchiveInfo are not limited to files created with the SaveGrid
method: they work with any file and could even be used to create a stand-alone compression utility.

Archive files created with the Archive method are not compatible with ZIP files, although their compression
ratios are similar.

Printing Grids

You may print grids using the PrintGrid method. PrintGrid allows you to specify paper orientation, margins,
and a footer, or show a printer setup dialog box and allow the user to select the printer, paper orientation, etc.
While the document is printing, the PrintGrid method fires several events that allow you to cancel the printing
and annotate each page as it is created (StartPage), control page breaks (BeforePageBreak), or select specific
rows and use them as page headers (GetHeaderRow).

If you need more sophisticated printing capabilities, such as print previewing or the ability to render several
grids and other text and graphical elements on a single document, you should use the VSPrinter control
(available separately from ComponentOne). The VSPrinter control has a RenderControl property that allows
you to render grids on documents along with other data. VSPrinter documents can be previewed, printed, or
saved to files.

Data Binding (ADO and DAO)

Data-binding is a process that allows one or more data consumers to be connected to a data provider in a
synchronized manner. For example, if you move the cursor on a data-bound grid, other controls connected to
the same data source will change to reflect the new current record.

There are two main types of data binding: OLEDB/ADO and DAO. OLEDB is the latest Microsoft standard,
and is becoming increasingly popular. It provides access to data from many different sources, and was
designed to be OLE-compliant. DAO used to be the standard before OLEDB came along, and is still fairly
popular.

The VSFlexGrid control has an OLEDB/ADO version (VSFLEX8.OCX) and a DAO version
(VSFLEX8D.OCX), so it will work with your data regardless of your choice of database standard.

The VSFlexGrid control has three main properties and one event that controls data binding: the DataSource,
DataMode, and VirtualData properties, and the AfterDataRefresh event.

Data Binding (ADO and DAO) · 23

The DataSource property
The DataSource property refers to a recordset, which contains the data. In the OLEDB version, this property
may be set at design time to refer to a data source such as the Microsoft ADO control, a DataEnvironment
object, or a custom OLEDB data source class you create with Visual Basic. It may also be set at run time. In
the DAO version, this property must be set at design time to refer to a DataControl (this control is built-into
Visual Basic, rather than an OCX), and cannot be changed later. You may still change the data source, but
only through the DataControl itself, and not through the DataSource property.

The DataMode property
The DataMode property allows you to determine whether the control should simply read the data from the
data source (flexDMFree setting) or whether it should be fully bound to the data source (flexDMBound setting).
In the flexDMFree mode, the data is read from the data source and becomes property of the grid. If you
change it, the changes will not be written back to the data source. If you move the cursor, other controls will
not be affected. In the flexDMBound mode, the control is fully bound. Changes made to the grid will be
reflected in the data source, and moving the cursor on the grid will cause other bound controls to synchronize
and display the current record.

Note that in order to modify the data, the Editable property must be set to a non-zero value.

The VirtualData property
The VirtualData property allows to determine whether the control should read the entire recordset at once
(synchronously), or in small chunks, on an as-needed basis (asynchronously). If VirtualData is set to False,
the entire recordset is read immediately. For large recordsets (over 1000 records or so), this can be time-
consuming, so this setting is rarely used. If VirtualData is set to True, the data is read only when the control
needs it (to display or edit, for example), in chunks of 100 rows at a time. The default value for the
VirtualData property is True, and you should rarely have to change it.

The AfterDataRefresh event
The AfterDataRefresh event is useful when the control is bound to a data source and you want to perform
some operation on the data whenever it is refreshed. For example, you might want to display subtotals or add
special formatting to certain columns or cells.

Also, it is important to know that when the source recordset changes, all existing columns are destroyed and
recreated from scratch. In this process, most column properties are reset to their default values. Thus, if you set
up your columns using the ColEditMask, ColFormat, ColComboList, ColImageList, etc., you should do it
in response to the AfterDataRefresh event, not in the Form_Load event.

Other types of Data Binding

In addition to the traditional types of data binding described above, the VSFlexGrid control provides three
new ways to connect the control to data sources. You may use the BindToArray method to connect the grid to
a Variant array or to another VSFlexGrid control, or use the FlexDataSource property to connect the grid to a
custom data source that you develop yourself.

Binding to Variant arrays
Binding to arrays is useful when the data you want to display is already stored in an array, so you don't have to
copy it back and forth between the control and the array, when you want to connect several grids to a single
array, or when you have three-dimensional arrays and want to use the VSFlexGrid to view the array "page by
page".

To bind the VSFlexGrid to an array, use the BindToArray method and pass a Variant array as the first
parameter. The grid will display values from the array and automatically write any modifications back into the

24 · VSFlexGrid Introduction

array. If you make changes to the array in code, however, you must call the grid's Refresh method to make
them visible to the user.

The parameters on the BindToArray method allow you to control how the rows and columns map onto the
array's dimensions, so you can easily transpose the array. The mapping always spans the entire array,
however. If you want to hide some rows or columns, set their height or width to zero. The binding does not
apply to fixed rows or columns. It works only on the scrollable part of the control.

Binding to other VSFlexGrid controls
The BindToArray method also allows you to bind the control to another VSFlexGrid control. This way, you
may create different "views" of the same data without having to keep duplicate copies of the data. The syntax
is the same, except the first parameter is a reference to another VSFlexGrid control.

When two controls are bound, changes made to cells in either control will reflect on the other. When binding
to another VSFlexGrid control, the fixed cells are bound as well as the scrollable ones. Note that the binding
only applies to the data, not to the formatting.

Binding to a FlexDataSource
For the ultimate in data-binding flexibility, the VSFlexGrid control allows you to create your own data source
objects and assign them to the VSFlexGrid control, which will display the data and allow the user to interact
with it.

The main advantages of data-binding through the FlexDataSource property are speed and flexibility. You
should consider using the FlexDataSource property when you have large amounts of data stored in custom
structures or objects (other than database recordsets). By using the FlexDataSource property, you may display
and edit the data in-place. There is no need to copy it to the grid and save it back later. In fact, the data may
even be mostly virtual, consisting of dynamically calculated values rather than static information. Plus, you
have complete flexibility to format and filter the data in any way you want.

To qualify as a FlexDataSource, your object must implement the IVSFlexDataSource interface. This interface
consists of five simple methods:

Method Name Description

GetFieldCount() Returns the number of fields in the data source.

GetRecordCount() Returns the number of records in the data source.

GetFieldName(Fld&) Returns the name of field number Fld (ranging from
zero to GetFieldCount() - 1).

GetData(Fld&, Rec&) Returns the data in field Fld , record Rec (ranging
from zero to GetRecordCount() - 1).

SetData(Fld&, Rec&, Data$) Returns the data in field Fld , record Rec.

For more details and a sample implementation of a custom data source, refer to the FlexDataSource property
in the control reference section.

Using VSFlexGrid in Visual C++

The VSFlexGrid control can be used in Visual C++ as well as in Visual Basic.

Using VSFlexGrid in Visual C++ · 25

This part of the manual was written to help experienced C++ programmers get started using the VSFlexGrid
control in VC++. If you don't know C++, MFC, or ATL, you may skip this section, as it probably won't make
much sense to you.

Until recently, using ActiveX controls in Visual C++ meant you had to use the MFC (Microsoft Foundation
Classes) framework, because this was the only reasonable way to get the ActiveX hosting capabilities and
Wizard support most programmers want. With the release of Microsoft Visual Studio 6, however, this
situation has changed. You can now use ATL (Active Template Library) and native compiler support for
COM to create projects that do not depend on MFC. In fact, even if your project is based on MFC you should
take advantage of the native COM support to improve the performance of your applications.

Using VSFlexGrid in MFC projects
To use the VSFlexGrid control in MFC projects, you will normally follow these steps:

1. Create a new dialog-based MFC project.

2. Go to the resource editor, open the dialog, right-click on it, select "Insert ActiveX control", and pick
the VSFlexGrid control from the list (if the grid is not on the list, it hasn't been registered on your
computer).

3. Hold down the CTRL key and double-click on the grid. This will cause Developer Studio to generate
wrapper classes through which you can interact with the control. When the wrapper classes are ready,
select a name for the control (e.g. m_Grid).

4. From now on, things are pretty much the same as in VB. You can right-click on the control to
implement event handlers, and access the controls properties and methods through the m_Grid
variable. Most properties are exposed through GetPropertyName and SetPropertyName member
functions. Unfortunately, enumerated values get translated into longs instead of their proper
enumeration symbols, but that's a relatively minor inconvenience. (And one that can be avoided, read
on).

If you take a look at the CVSFlexGrid wrapper generated by Developer Studio, you will see that the class is
derived from CWnd. This means you can move, size, show, or hide the control as if it were a regular window.
The wrapper class also has a handy Create function that lets you create new instances of the control. For
example, if you add this declaration to the main dialog's header file:

 class CMyDlg : public Cdialog
 {
 // Construction
 public:
 // standard constructor
 CMyDlg(CWnd* pParent = NULL);

 // new VSFlexGrid
 CvsFlexGrid m_GridDynamic;

You can create the control by adding the following code to the dialog's OnInitDialog function:

 BOOL CMyDlg::OnInitDialog()
 {
 // Wizard-generated code

 // TODO: Add extra initialization here
 // create a second instance of the VSFlexGrid control
 RECT rc;
 GetClientRect(&rc);
 InflateRect(&rc, -5, -5);
 rc.left = (rc.left + rc.right) / 2;
 m_GridDynamic.Create(NULL, WS_VISIBLE, rc, this, 100);
 return TRUE; // return TRUE
 }

26 · VSFlexGrid Introduction

The problem with this second approach is that you have to hook up the event handlers manually. You can do
this by copying the code created by the Wizard for the first control (it involves using several macros to define
an "event sink"). Hooking up the events manually is not difficult, but it is a tedious and error-prone process.
Unless you have a good reason to create the controls dynamically, you should stick to the resource editor and
the Wizard.

This covers most of what you need to know about using ActiveX controls in MFC. There are a couple of
issues that deserve additional explanation (at least our tech support department gets many questions on these):
handling optional parameters, Picture properties, and dual interfaces.

Handling Optional Parameters in MFC
Optional parameters in COM interfaces are always of type VARIANT. To omit them in Visual Basic, you
simply don't supply a value for them at all. The wrapper classes created by the MFC Wizard, however, require
that you supply VARIANTS for all parameters, optional or not. In these cases, what you need to do is create a
VARIANT of type VT_ERROR, and use that in place of the optional parameters.

For example, the VSFlexGrid control has an AutoSize method that takes three optional parameters. To
invoke AutoSize omitting the optional parameters, you could write:

 COleVariant vtNone(0L, VT_ERROR);
 m_Grid.AutoSize(1, vtNone, vtNone, vtNone);

Notice that the VARIANT is created with a 0L value instead of simply 0. This is required by the compiler to
define whether the zero is a short or a long integer.

Handling Picture Properties in MFC
OLE Pictures are objects in their own right. They have methods that retrieve their size, type, and so on. As
such, setting or retrieving Picture properties involves dealing with their IDispatch pointers (IDispatch is the
basic type of Automation COM interface). The question is, how do I create one of these interfaces to give to
the control? The easiest way is through an MFC helper class called CPictureHolder. This class, declared in the
AFXCTL.H file, has methods that allow you to create and manage OLE pictures.

The code below shows how you can use the CPictureHolder class to set the VSFlexGrid control's CellPicture
property:

 #include <afxctl.h> // declare CPictureHolder class
 void CJnkDlg::OnButton1()
 {
 // create CPictureHolder
 CPictureHolder pic;
 // load a picture from a bitmap resource
 pic.CreateFromBitmap(IDB_BITMAP1);
 // get the LPDISPATCH pointer
 LPDISPATCH pPic = pic.GetPictureDispatch();
 // assign LPDISPATCH to control
 m_Grid.SetCellPicture(pPic);
 // don't forget to release the LPDISPATCH
 pPic->Release();
 }

Besides setting the picture property, the code above illustrates an important point when dealing with COM
interfaces. Notice how the LPDISPATCH pointer is obtained, used, and released. Failing to release COM
pointers results in objects dangling in memory and wasting resources.

Some properties and methods require that you pass pictures in VARIANT parameters (e.g. the Cell property).
To do this, initialize a ColeVariant as follows:

 COleVariant vPic;
 V_VT(&vPic) = VT_DISPATCH;
 V_DISPATCH(&vPic) = pic.GetPictureDispatch();

Using VSFlexGrid in Visual C++ · 27

Notice that in this case you must not release the LPDISPATCH pointer, because the COleVariant destructor
will do that automatically when vPic goes out of scope.

Dual Interfaces in MFC
The wrapper classes created by the MFC wizard are very helpful, and for a while they were the best you could
get. With Visual Studio 6, however, the compiler has built-in COM support, including a different way to create
wrapper classes for COM objects through the new #import compiler directive. These "native" wrapper classes
are faster and more flexible than the ones generated by MFC:

The MFC wrappers are based on the IDispatch interface, so every method or property you access needs to
pack its parameters into VARIANTS and go through a call to the Invoke method. The native wrappers, by
contrast, take advantage of dual interfaces to access properties and methods via direct calls, which is much
faster.

The native wrappers are more complete and configurable. They include object-defined enumerations, default
values for optional parameters, and an optional VB-like syntax for accessing properties. These new features
allow you to write

 m_spGrid->MousePointer = flexHourglass;
 m_spGrid->AutoSize(1);

instead of

 m_Grid.SetMousePointer(11);
 COleVariant vtNone(0L, VT_ERROR);
 m_Grid.AutoSize(1, vtNone, vtNone, vtNone);

Taking advantage of dual interfaces in existing MFC projects is easy. All you have to do is include the
appropriate #import statement in your StdAfx.h file, then create a pointer and assign it to the existing control.
For example, assuming you have an MFC-based m_Grid control, all the extra code you would need would be
this:

 // include this statement in the StdAfx.h file
 #import "c:\windows\system\vsflex8l.ocx" no_namespace
 // note: to use the OLEDB/ADO version of the control,
 // you need to #import "msdatsrc.tlb" as well.
 //#import "c:\windows\system\msdatsrc.tlb" no_namespace
 //#import "c:\windows\system\vsflex8l.ocx" no_namespace

Then, instead of using the control in the usual way, declare a variable of type IVSFlexGridPtr, initialize it by
setting it to m_Grid.GetControlUnknown(), and use it instead of m_Grid. The two routines listed below
illustrate the difference between the two approaches (both routines fill a grid 1000 times with a string and
report how long it took them to do it):

 // Using the MFC-generated wrapper class
 void CMyDlg::BenchDispatchClick()
 {
 CString strText = "Hello.";]
 DWORD tStart = GetTickCount();
 for (long i = 0; i < 1000; i++)’
 for (long r = m_Grid.GetFixedRows(); r < m_Grid.GetRows(); r++)
 for (long c = m_Grid.GetFixedCols(); c < m_Grid.GetCols(); c++)
 m_Grid.SetTextMatrix(r, c, (LPCTSTR)strText);
 DWORD tElapsed = GetTickCount() - tStart;
 CString str;
 str.Format("Done in %d seconds using dispatch interface.",
 (int)(tElapsed / 1000));
 MessageBox(str);
 }
 // Using the native wrapper class (#import-based)
 void CMyDlg::BenchDualClick()
 {

28 · VSFlexGrid Introduction

 IVSFlexGridPtr spGrid = m_Grid.GetControlUnknown();
 _bstr_t strText = "Hello.";
 DWORD tStart = GetTickCount();
 for (long i = 0; i < 1000; i++)
 for (long r = spGrid->FixedRows; r < spGrid->Rows; r++)
 for (long c = spGrid->FixedCols; c < spGrid->Cols; c++)
 spGrid->PutTextMatrix(r, c, strText);
 DWORD tElapsed = GetTickCount() - tStart;
 CString str;
 str.Format("Done in %d seconds using dual interface.",
 (int)(tElapsed / 1000));
 MessageBox(str);
 }

The code looks very similar, except for the dot notation used with the m_Grid variable and the arrow used
with the spGrid variable. The big difference is in execution speed. The MFC/Dispatch version takes 30
seconds to fill the grid 1000 times, while the native/dual version takes only 8 seconds. The dual version is over
three times faster than the traditional MFC/Dispatch version.

In functions that only set a few properties, it probably doesn't matter much which type of wrapper class you
choose. But in functions with lengthy for statements that access properties or methods several hundred times,
you should definitely consider using the #import statement/ dual interface approach.

Using VSFlexGrid in ATL projects
Using the VSFlexGrid control in ATL is not much different than using it in MFC projects. You can still use
Wizards and a rich set of low-level support classes. What you don't get is the higher-level classes,
document/view architecture, and other amenities provided by MFC.

To use the VSFlexGrid control in ATL projects, you will normally follow these steps:

1. Create a new ATL COM project of type "Executable".

2. Select the Insert | New ATL Object menu option, select the Miscellaneous object type, then choose
Dialog. Pick any name for the dialog.

3. Go to the resource editor, open the dialog, right-click on it, select Insert ActiveX control, and pick
the VSFlexGrid control from the list (if the grid is not on the list, it hasn't been registered on your
computer). You may also want to set the dialog's ClipChildren property to True to make it repaint
more smoothly.

4. Right-click on the control and select the Events option. Then select the grid control from the list on
the right and the list on the left will show all the events available for the control. Select the ones you
want to handle by double-clicking them, and click OK when you are done. This will automatically
insert an #import statement into the dialog header file.

5. Edit the #import statement and remove all qualifiers except for no_namespace. If you are using the
OLEDB/ADO version of the VSFlexGrid control, then you need two #import statements instead of
one (this is because the OLEDB/ADO version of the grid relies on the Microsoft DataSource object,
which needs to be imported as well):

 #import "c:\windows\system\msdatsrc.tlb" no_namespace
 #import "c:\windows\system\vsflex8l.ocx" no_namespace

6. Now the control is on the form, but you can't talk to it yet. To get a pointer to the control, open the
dialog header file and edit the OnInitDialog function so it looks like this:

 IVSFlexGridPtr m_spGrid; // pointer to the control
 CAxWindow m_wndGrid; // pointer to the host window
 LRESULT OnInitDialog(UINT uMsg, WPARAM wParam,
 LPARAM lParam, BOOL& bHandled)
 {
 m_wndGrid = GetDlgItem(IDC_VSFLEXGRID1); // get host window

Using VSFlexGrid in Visual C++ · 29

 m_wndGrid.QueryControl(&m_spGrid); // get control
 m_wndGrid.SetFocus(); // activate the control
 AtlAdviseSinkMap(this, True); // hook up events
 return 1; // let the system set the focus
 }

7. This code declares a pointer to the control and one to the control's host window. When the dialog
initiates, the code makes m_wndGrid point to the host window and queries it for the contained
control, which is stored in the m_spControl variable. From then on, you may move and resize the
control through its host window (m_wndGrid) and access the control's properties and methods
through the control pointer (m_spControl).

8. The only thing missing is the code that displays the dialog. That needs to be added to the project's
main cpp file. Here's the code that you will need:

 #include "MyProject_i.c"
 #include "MyDlg.h" // add this line
 // wizard-generated code . . .

 extern "C" int WINAPI _tWinMain(HINSTANCE hInstance,
 HINSTANCE /*hPrevInstance*/, LPTSTR lpCmdLine, int /*nShowCmd*/)
 {
 // wizard-generated code . . .
 CMyDlg dlg; // create the dialog
 dlg.DoModal(); // show the dialog
 //MSG msg; // comment these lines out
 //while (GetMessage(&msg, 0, 0, 0))
 // DispatchMessage(&msg);
}

That's about it. You could clean up this project by removing the references to the idl and rgs files, which it
doesn't need (it is just an EXE, not a COM server). See the samples on the distribution CD to find out what
changes are necessary or refer to the ATL documentation for more details.

Handling Pictures in ATL projects
If you are not using MFC, you can't use the MFC CPictureHolder class. But you can use the CPicHolder
class provided in the samples on the distribution CD. CPicHolder is actually more powerful than
CPictureHolder because it provides methods for loading pictures from disk files and from the clipboard. Once
you include the CPicHolder class in your project, you can handle pictures just as we discussed earlier, when
dealing with MFC projects.

The samples on the distribution CD include other useful classes, such as CToolTip, and a file named
AtlControls.h that is part of a Visual Studio sample and defines ATL wrapper classes for all Windows
common controls.

Creating Controls Dynamically in ATL
As in MFC, you can create controls dynamically with ATL. These are the steps required:

1. Insert the appropriate #import statement in the dialog header file or in the StdAfx.h file.

2. Add two member variables to your dialog or window class:

 CAxWindow m_wndGrid; // host window
 IVSFlexGridPtr m_spGrid; // pointer to control

3. When the dialog or window is created, create the control and its host window, and attach the control
to the window:

 // initialize ATL ActiveX hosting
 AtlAxWinInit();
 // create the control (will fail if not registered)

30 · VSFlexGrid Introduction

m_spGrid.CreateInstance(__uuidof(VSFlexGrid)));
 ATLASSERT(m_spGrid != NULL);
 // create the host window (nID = IDC_GRID1)
 // the nID is needed if you want to sink events.
 RECT rc;
 GetClientRect(&rc);
 m_wndGrid.Create(m_hWnd, rc, NULL,
 WS_CHILD | WS_VISIBLE, 0, IDC_GRID1);
 // attach the control to the host window
 CComPtr<IAxWinHostWindow> spHost;
 m_wndGrid.QueryHost(&spHost1);
 spHost->AttachControl(m_spGrid, m_wndGrid);

As in MFC, this approach requires you to hook up the event handlers manually. You can also copy wizard-
generated code, which does two things: it adds an IDispEventImpl declaration to your class so it inherits the
ATL event handling mechanisms, and adds an event sink map to your class using BEGIN_SINK_MAP,
SINK_ENTRY, and END_SINK_MAP macros. You still need to add the call to AtlAdviseSinkMap in order
to start getting the events.

Also in ATL, unless you have a good reason to create the controls dynamically, you should still stick to the
resource editor and the Wizard.

Using VSFlexGrid in Visual J++

Using the VSFlexGrid control in Microsoft Visual J++ is a lot like using it in Visual Basic. The visual
interface is almost the same (unlike VC++), despite the different syntax.

There are a few caveats, however, most of which apply to all ActiveX controls (they are not specific to the
VSFlexGrid control). They are described below:

Using the Text Property
When using the VSFlexGrid control in VJ++, you should not access the Text property using the wrapper-
generated setText() and getText() methods. Use setCtlText() and getCtlText() instead.

This is because when VJ++ generates the wrapper class for the control, it includes getText() and setText()
methods that access the control's window text, which is not related to any properties. If the control happens to
have a Text property (which the VSFlexGrid control does), it gets mapped into getCtlText() and setCtlText()
instead. Note that this happens for all ActiveX controls, not just the VSFlexGrid.

To use the Text property in VJ++ you would write code such as this:

 private void button1_click(Object source, Event e)
 {
 VSFlexGrid1.setCtlText("Hello World"); // this works
 //VSFlexGrid1.setText("Hello World"); // this doesn't work!
 }

Handling Pictures
The VJ++ wrappers generated for picture properties work correctly, and you can use the setCellPicture and
getCellPicture methods normally. However, the wrappers fail when the picture is contained in a Variant,
which prevents you from using the SetCell method to set cell pictures directly.

There is an easy workaround for this. By inspecting the wrapper code, you can see that J++ converts its native
image type to an IPictureDisp interface with a call to the
com.ms.wfc.ui.AxHost.getIPictureDispFromPicture(img) support function.

By using this in your calls to setCell, you can set pictures with no problems. For example:

Using VSFlexGrid in Visual J++ · 31

 // get Image object
 Image img = pictureBox1.getImage();
 // assign to current cell
 VSFlexGrid1.setCellPicture(img);
 // assign to a range
 VSFlexGrid1.setCell(3, new Variant(3), new Variant(3),
 new Variant(4), new Variant(4),
 new
Variant(com.ms.wfc.ui.AxHost.getIPictureDispFromPicture(img)));
 // this does *not* work
 //VSFlexGrid1.setCell(3, new Variant(3), new Variant(3),
 // new Variant(4), new Variant(4),new Variant(img));

Clearing Pictures
You can remove pictures from cells using three techniques:

1. Assign an empty picture to a cell or range:

 VSFlexGrid1.setCellPicture(new Bitmap(0,0));
 VSFlexGrid1.setCell(3, new Variant(3), new Variant(3),
 new Variant(4), new Variant(4),
 new Variant(com.ms.wfc.ui.AxHost.getIPictureDispFromPicture(new
Bitmap(0,0))));

2. Use the Clear method to remove all cell formatting:

 VSFlexGrid1.Clear(new Variant(1), new Variant(2)); // scrollable
area/format

3. Use the setCell property and set flexcpCustomFormat (21) to False. This removes all formatting from a
range:

 VSFlexGrid1.setCell(21, new Variant(1), new Variant(1),
 new Variant(10), new Variant(10), new Variant(0));

Data Binding
In Visual Basic, you may select the DataSource property at design time and select from a list of available data
sources. This is not done by the controls, but by VB itself. In Visual J++, the DataSource property is not
displayed in the Property window. This is because J++ uses a different type of design time mechanism, and
that is why you don't see the DataSource property at design time (not on the VSFlexGrid, MSDataGrid, or
any other ActiveX OLEDB control).

To implement data binding in J++, you have two options: use the native WFC DataSource control, or use the
ADO classes and create the data source yourself. Either way, you need to connect the grid to the data source
using code.

a) To use the native WFC DataSource control, follow these steps:

• Put a WFC DataSource control on the form.

Set the connectionString and commandText properties to the data you want.

• Put a VSFlexGrid control on the form.

Set the Editable, DataMode, and VirtualData properties to the values you want.

• Bind the VSFlexGrid control to the DataSource control using the following code:

 public class Form1 extends Form {
 public Form1() {
 // Required for Visual J++ Form Designer support
 initForm();

32 · VSFlexGrid Introduction

 // Set FlexGrid properties.
 fg.setEditable(True);
 fg.setDataMode(vsflex8.DataModeSettings.flexDMBound);
 // Bind FlexGrid to dataSource control.
 msdatsrc.DataSource ds = (msdatsrc.DataSource)

dataSource1.getRecordset().getDataSource();
 fg.setDataSource(ds);
 }
 }

b) To use the VSFlexGrid control with ADO data objects, follow these steps:

• Import the WFC ADO package with the following import statement:

 import com.ms.wfc.data.*;

• Declare a Recordset variable and initialize it when the form loads

• Bind the Recordset to the VSFlexGrid control as before:

 public class Form1 extends Form {
 private Recordset m_rs;
 public Form1() {
 // Required for Visual J++ Form Designer support
 initForm();
 // create ADO recordset
 m_rs = new Recordset();
 m_rs.open("SELECT * FROM CUSTOMERS", "NORTHWIND",
 AdoEnums.CursorType.STATIC,
 AdoEnums.LockType.BATCHOPTIMISTIC);
 // Bind FlexGrid to ADO recordset
 msdatsrc.DataSource ds =
(msdatsrc.DataSource)m_rs.getDataSource();
 fg.setDataSource(ds);
 }
 }

VSFlexGrid Property Groups
The VSFlexGrid control has a rich set of properties, methods, and events. You do not have to know all of
them in order to use the control effectively. The reference below shows the most important properties,
methods, and events, grouped by type of usage. Some elements appear in more than one group. For details on
specific properties, events, or methods, check the reference part of this document.

1) Grid Layout

Rows, Cols, FixedRows, FixedCols, FrozenRows, FrozenCols, RightToLeft
RowHeight, ColWidth, AutoSize, AutoSizeMode, Sort, ColSort
RowHeightMin, RowHeightMax, ColWidthMin, ColWidthMax
LeftCol, TopRow, RightCol, BottomRow, ClientWidth, ClientHeight
CellLeft, CellTop, CellWidth, CellHeight, RowIsVisible, ColIsVisible, RowPos, ColPos, RowPosition,
ColPosition

2) Cursor and Selection

Row, Col, RowSel, ColSel, Select, GetSelection, ShowCell
AllowSelection, AllowBigSelection, FocusRect, HighLight,
SelectionMode, IsSelected, SelectedRow, SelectedRows
BeforeMouseDown, MouseRow, MouseCol, BeforeRowColChange, AfterRowColChange,
BeforeSelChange, AfterSelChange

VSFlexGrid Property Groups · 33

3) Editing

Editable, EditCell, EditWindow, ShowComboButton, FillStyle, TabBehavior, BeforeEdit, StartEdit,
ValidateEdit, AfterEdit, CellButtonClick, ComboList, ColComboList, BuildComboList, EditMask,
ColEditMask, EditMaxLength, EditText, EditSelStart, EditSelLength, EditSelText, ComboCount,
ComboData, ComboIndex, ComboCount, ComboSearch, KeyDownEdit, KeyPressEdit, KeyUpEdit,
ChangeEdit

4) Getting and Setting Values

Cell, Text, TextMatrix, Clip, ClipSeparators, FillStyle, AddItem, RemoveItem, Clear, FindRow,
Aggregate, Value, ValueMatrix

5) User Interface

ExplorerBar, BeforeMoveColumn, AfterMoveColumn, BeforeSort, AfterSort, AllowUserResizing,
AutoSizeMouse, BeforeUserResize, AfterUserResize, FrozenRows, FrozenCols, AllowUserFreezing,
AfterUserFreeze, AllowSelection, AllowBigSelection, Editable, TabBehavior, ScrollBars, ScrollTrack,
BeforeScroll, AfterScroll, ScrollTips, ScrollTipText, BeforeScrollTip, AutoSearch, AutoSearchDelay

6) Outlining and Summarizing

OutlineBar, OutlineCol, TreeColor, NodeOpenPicture, NodeClosedPicture
IsSubtotal, RowOutlineLevel, IsCollapsed, BeforeCollapse, AfterCollapse
Subtotal, SubtotalPosition, MultiTotals, Outline, GetNodeRow

7) Merging Cells

MergeCells, MergeRow, MergeCol, MergeCompare, GetMergedRange

8) Data Binding

DataSource, DataMember, DataMode, VirtualData, DataRefresh, BeforeDataRefresh, AfterDataRefresh,
AutoResize, Error
BindToArray, LoadArray, FlexDataSource, AddItem, RemoveItem, FilterData

9) Saving, Loading, and Printing Grids

SaveGrid, LoadGrid, ClipSeparators, Archive, ArchiveInfo, PrintGrid, StartPage, BeforePageBreak,
GetHeaderRow

10) OLE Drag Drop

OLEDragMode, OLEDropMode, BeforeMouseDown, OLEDrag, OLEStartDrag, OLECompleteDrag,
OLEDragDrop, OLEDragOver, OLEGiveFeedback, OLESetData

Visual Basic Samples · 35

VSFlexGrid Samples

Please be advised that this ComponentOne software title is accompanied by various sample projects and/or
demos, which may or not make use of other ComponentOne development tools. While the sample projects
and/or demos included with the software are used to demonstrate and highlight the product’s features, and
how the control may be integrated with the rest of the ComponentOne product line, some of the controls used
in the demo/sample project may not be included with the purchase of certain individual products.

The ComponentOne Samples are also available at
http://helpcentral.componentone.com/ProductResources.aspx.

Visual Basic Samples
AdjWidth Resize a form based on the width of the grid. This sample uses the

VSFlexGrid control.

AutoComp Implement Excel-style auto-completion. This sample uses the VSFlexGrid
control.

Batch Browse and edit a disconnected ADO recordset. This sample uses the
VSFlexGrid control.

Bind Bind the FlexGrid to Variant Arrays or to other FlexGrid controls. This
sample uses the VSFlexGrid control.

Buttons Implement custom cell buttons. This sample uses the VSFlexGrid control.

Calendar Build a calendar control with the VSFlexGrid. This sample uses the
VSFlexGrid control.

CellChange Provide conditional formatting and dynamic data summaries. This sample
uses the VSFlexGrid control.

CellNotes Implement Excel-style cell notes. This sample uses the VSFlexGrid control.

CustData Implement grid-based views of custom data structures using
FlexDataSource. This sample uses the VSFlexGrid control.

CustData2 Implement grid-based views of virtual (calculated) data using
FlexDataSource. This sample uses the VSFlexGrid control.

CustDataADO Bind the grid to ADO data sources using the FlexDataSource property. This
sample uses the VSFlexGrid control.

CustDataFMT Implement data formatting using FlexDataSource. This sample uses the
VSFlexGrid control.

CustDataPict Map data values into pictures using the ColImageList property. This sample
uses the VSFlexGrid control.

CustDataSort Sort data from a custom data source. This sample uses the VSFlexGrid
control.

CustomEditor Edit grid using a custom editor. This sample uses the VSFlexGrid control.

http://helpcentral.componentone.com/ProductResources.aspx

36 · VSFlexGrid Samples

DBase Browse data from a database with frozen cells, translated text/pictures, and
hierarchical recordsets. This sample uses the VSFlexGrid control.

DragBound Implement data-bound column dragging. This sample uses the VSFlexGrid
control.

DragDrop Implement Explorer-style drag and drop using the VSFlexGrid control. This
sample uses the VSFlexGrid control.

DragDrop2 Implement OLE drag/drop of text, pictures, and files. This sample uses the
VSFlexGrid control.

DragRows Use the ExplorerBar property and the DragRow method to drag rows. This
sample uses the VSFlexGrid control.

Events This sample uses the VSFlexGrid control.

DTPick Use a DateTimePicker control to edit date entries. This sample uses the
VSFlexGrid control.

Excel Save grid contents into an Excel xls file. This sample uses the VSFlexGrid
control.

Explorer Build an Explorer-like interface, populated on demand. This sample uses
the VSFlexGrid control.

Fetch Compare the time it takes to bind to various types of recordset. This
sample uses the VSFlexGrid control.

FilterDB Filter data as it is retrieved or saved to a bound recordset. This sample
uses the VSFlexGrid control.

Group Implement Outlook-style grouping using the FlexGrid. This sample uses the
VSFlexGrid and vsfgroup? control.

HyperLnk Use the FlexGrid control to browse Internet hyperlinks. This sample uses
the VSFlexGrid control.

KeepSelection Set the Row property while keeping the extended row selection. This
sample uses the VSFlexGrid control.

KeyHook Shows how you can subclass the VSFlexGrid editor window and record.
This sample uses the VSFlexGrid control.

MaskClean Extract data from grid entries formatted with an EditMask. This sample
uses the VSFlexGrid control.

OwnerDraw Draw custom borders around selection. This sample uses the VSFlexGrid
control.

PageBrk Print a grid and control where pages break. This sample uses the
VSFlexGrid control.

Password Use a column for entering passwords. This sample uses the VSFlexGrid
control.

C++ Samples · 37

PIVOT Build a pivoting data view with the FlexGrid. This sample uses the
VSFlexGrid control.

PopEdit Implement a custom menu for the FlexGrid's editor. This sample uses the
VSFlexGrid control.

PrintCustom This sample uses the VSFlexGrid control.

PropPage Build a property browser interface using the VSFlexGrid. This sample uses
the VSFlexGrid control.

ROLLBACK Edit disconnected recordsets with the option to commit or rollback the
edits. This sample uses the VSFlexGrid control.

ScrlCell Scroll the contents of individual grid cells. This sample uses the
VSFlexGrid control.

Selection Use code to control extended selections and scrolling. This sample uses
the VSFlexGrid control.

SortOutline Use the Node.Sort method to sort outlines. This sample uses the
VSFlexGrid control.

Spell Use the VSSpell control to spell check grid entries as you type them. This
sample uses the VSFlexGrid and VSSpell control.

TreeNode Manage an outline tree using the VSFlexNode object. This sample uses
the VSFlexGrid control.

WallPaper Implement graphical backgrounds with the WallPaper property. This
sample uses the VSFlexGrid control.

XLS This sample uses the VSFlexGrid control.

XML Display an XML tree. This sample uses the VSFlexGrid control.

Xml2 Display an XML tree using the MSXML version 2.0 DOM. This sample uses
the VSFlexGrid control.

XMLBound Bind a FlexGrid control to an XML document. This sample uses the
VSFlexGrid control.

C++ Samples
AdjWidth Resize a form based on the width of the grid. This sample uses the

VSFlexGrid control.

ADOFilter Filter records no an ADO recordset. This sample uses the VSFlexGrid
control.

Archive Zip-like utility using Archive and ArchiveInfo methods. This sample uses
the VSFlexGrid control.

38 · VSFlexGrid Samples

ATLDDROP OLE drag and drop in ATL projects. This sample uses the VSFlexGrid
control.

AxWin Create FlexGrid controls as children of the main window. This sample
uses the VSFlexGrid control.

BigDemo View all main features for the VSFlexGrid control. This sample uses the
VSFlexGrid control.

CellChange Monitor changes to the grid to format and total cells. This sample uses
the VSFlexGrid control.

Clipboard Monitor the keyboard and support the clipboard. This sample uses the
VSFlexGrid control.

CustDataMFC Bind the grid to a custom data source. This sample uses the VSFlexGrid
control.

DBase Bind the grid to an ADO data source and customize it. This sample uses
the VSFlexGrid control.

DragRows Drag single rows or groups of rows. This sample uses the VSFlexGrid
control.

DTPickATL Use a DateTimePicker control to edit dates on the grid. This sample
uses the VSFlexGrid control.

DTPickMFC Use a DateTimePicker control to edit dates on the grid. This sample
uses the VSFlexGrid control.

EditWindow Customize the built-in editor. This sample uses the VSFlexGrid control.

EXPLORER Use the FlexGrid to implement a Windows Explorer clone. This sample
uses the VSFlexGrid control.

LoadXL Load Excel files (xls) into the FlexGrid. This sample uses the
VSFlexGrid control.

MergePrt Print a merged grid and add custom headers/footers. This sample uses
the VSFlexGrid control.

MFCData Bind the grid to an ADO data source. This sample uses the VSFlexGrid
control.

MfcDDrop Implement OLE drag drop between grid and other controls. This sample
uses the VSFlexGrid control.

MFCDynamic Create a grid dynamically using the CreateControl method. This sample
uses the VSFlexGrid control.

MFCObject Store custom objects in the grid. This sample uses the VSFlexGrid
control.

MFCPict Show pictures in grid cells. This sample uses the VSFlexGrid control.

PropWnd Implement a property grid using the FlexGrid. This sample uses the
VSFlexGrid control.

HTML Samples · 39

SetupEdit Use the SetupEditWindow event to customize the combo editor. This
sample uses the VSFlexGrid control.

TREENODE Manage an outline tree using the VSFlexNode object. This sample uses
the VSFlexGrid control.

XML2 Display an XML tree using the MSXML version 2.0 DOM. This sample
uses the VSFlexGrid control.

HTML Samples
HtmlSamples Various HTML samples that show licensing, databinding, etc.

Edit Demo · 41

VSFlexGrid Tutorials

The following sections contain tutorials that illustrate some of the main features in the VSFlexGrid control.
The tutorials walk you through the creation of several simple projects, describing each step in detail. After
walking through the tutorials, you should be able to start programming the VSFlexGrid grid on your own.

The tutorials are:

Edit Demo (page 41)

Starting with a basic data-entry grid, this tutorial shows how to implement data formatting, check boxes, drop-
down lists, input masks, data validation, and clipboard support.

Outline Demo (page 45)

Shows how you can use the VSFlexGrid as an outliner to display structured (or hierarchical) data.

Data Analysis Demo (page 48)

Starting with a grid containing sales data for different products, regions, and salespeople, this tutorial show
how to implement dynamic layout (column order), automatic sorting, cell merging, automatic subtotals, and
outlining.

Cell Flooding Demo (page 53)

This tutorial shows how to use the Cell property to format individual cells. The demo uses flooding to create a
display combining numbers and bars.

ToolTip Demo (page 54)

This tutorial shows how you can implement tooltips with different text for each cell.

Printing Demo (page 55)

This tutorial shows how you can print a grid with control over page breaks "header" rows which appear at the
top of every page.

OLE Drag and Drop Demo (page 56)

This tutorial shows how to implement automatic and manual OLE drag and drop.

Visual C++ MFC Demo (page 59)

This tutorial contains another version of the Outline Demo written in Visual C++ using the MFC application
framework.

The distribution CD contains more sophisticated samples that can be used as a reference.

Edit Demo
This sample starts with a basic data-entry grid, then adds the following features:

• Data formatting

• Check boxes

• Drop-down lists

• Input masks

• Complex data validation

42 · VSFlexGrid Tutorials

• Clipboard support

Here is what the final application will look like:

Step 1: Create the Control
Start a new Visual Basic project including VSFlexGrid 8.0 (if you don't know how to add OCX files to a
project, consult the Visual Basic documentation). The VSFlexGrid icon will be added to the Visual Basic
toolbox.

Create a VSFlexGrid object on the form by clicking the VSFlexGrid icon on the toolbox, then clicking on the
form and dragging until the object is the proper size.

Next, use the Visual Basic properties window to set the following control properties:

 (Name) = fg
 Editable = True
 Cols = 5
 FixedCols = 0
 FormatString = "=Product|Region|Sales Person|" & _ ">Amount
Sold|Bonus"

That's it. Press F5 to run the project, and you can start typing data into the control. Press F2 or the space bar to
edit existing entries, or just type new entries over existing ones.

Step 2: Data Formatting
When displaying numeric or date values, you will typically want to adopt a consistent format for the values.
The VSFlexGrid allows you to do this using the ColFormat property. This property allows you to assign a
format to each column. The formats are similar to the ones recognized by the Visual Basic Format function.

The ColFormat property must be assigned at runtime. A good place to do it is in the Form_Load event, as
show below:

 Private Sub Form_Load()

 ' format column 3 (Amount Sold) to display currency
 fg.ColFormat(3) = "$#,###.00"

 End Sub

This code assigns a format to column 3 (Amount Sold). The format specifies that values should be displayed
with a currency sign, thousand separators, and two decimals.

The ColFormat property does not affect the cell content, only the way it is displayed. You may change the
format freely without modifying the underlying data.

Edit Demo · 43

Step 3: Check Boxes
When displaying boolean (True/False) values, you have the option of using check boxes instead of
True/False strings or 1/0 values. This has the advantage of preventing users from entering bad values.

Column 4 (Bonus) contains boolean values (either someone gets a bonus or not). To display the values as
checkboxes, set the ColDataType property to flexdtBoolean. The control will automatically display and manage
the check boxes.

The ColDataType property must be assigned at runtime. Change the Form_Load routine as shown below:

 Private Sub Form_Load()

 ' format column 3 (Amount Sold) to display currency
 fg.ColFormat(3) = "$#,###.00"

 ' make column 4 (Bonus) a boolean column
 fg.ColDataType(4) = flexdtBoolean

 End Sub

Users may toggle the check boxes by clicking them or by selecting them with the keyboard and then hitting
enter or space. Press F5 to run the project again, then type a few sales amounts and give bonuses to some
people.

Step 4: Drop-Down Lists
Entering data is a tedious and error-prone process. Drop-down lists are great because they minimize the
amount of typing you must do, reduce the chance of errors, and increase the consistency of the data.

Let's assume that our sample project only involves sales of three products (Applets, Widgets, and Gadgets), in
four regions (North, South, East, and West), and that there are three full-time sales people (Mary, Sarah, and
Paula).

Typing repetitive data would be inefficient and error-prone. A much better approach would be to use drop-
down lists to let users pick the appropriate entry from lists. The VSFlexGrid allows you to assign a list of
choices to each column using the ColComboList property. The list consists of a string with choices, separated
by pipe characters ("|").

The ColComboList property must be assigned at runtime. Change the Form_Load routine as shown below:

 Private Sub Form_Load()

 ' format column 3 (Amount Sold) to display currency
 fg.ColFormat(3) = "$#,###.00"

 ' make column 4 (Bonus) a boolean column
 fg.ColDataType(4) = flexdtBoolean

 ' assign combo lists to each column
 fg.ColComboList(0) = "Applets|Wahoos|Gadgets"
 fg.ColComboList(1) = "North|South|East|West"
 fg.ColComboList(2) = "|Mary|Paula|Sarah"

 End Sub

Notice how the last ColComboList string starts with a pipe. This will allow users to type additional names
that are not on the list. In other words, these values will be edited using a drop-down combo, as opposed to a
drop-down list as the others. There are syntax options to create multi-column lists and translated lists as well.
See the control reference for more details.

44 · VSFlexGrid Tutorials

Press F5 to run the project again, then move the cursor around. When you move the cursor to one of the
columns that have combo lists, a drop-down button becomes visible. You may click on it to show the list, or
simply type the first letter of an entry to highlight it on the list.

Step 5: Input Masks
When picking data from a list, there's usually little need for data validation. When input values are typed in,
however, you will often want to make sure it is valid.

In our example, we would like to prevent users from typing text or negative values in column 3 (Amount Sold).
You can do this using the ColEditMask property, which assigns an input mask to a column that governs what
the user can type into that field.

The ColEditMask property must be assigned at runtime. Change the Form_Load routine as shown below:

 Private Sub Form_Load()

 ' format column 3 (Amount Sold) to display currency
 fg.ColFormat(3) = "$#,###.00"

 ' assign edit mask to column 3 (Amount Sold)
 fg.ColEditMask(3) = "######.##"

 ' make column 4 (Bonus) a boolean column
 fg.ColDataType(4) = flexdtBoolean

 ' assign combo lists to each column
 fg.ColComboList(0) = "Applets|Wahoos|Gadgets"
 fg.ColComboList(1) = "North|South|East|West"
 fg.ColComboList(2) = "|Mary|Paula|Sarah"

 End Sub

The edit mask ensures that the user will not type anything into column 3 except numbers. The syntax for the
ColEditMask property allows you to specify several types of input. See the control reference for details.

Step 6: Complex Data Validation
Input masks are convenient to help users input properly formatted data. They also help with simple data
validation tasks. In many situations, however, you may need to perform more complex data validation. In
these cases, you should use the ValidateEdit event.

For example, let's say some anti-trust regulations prevent us from being able to sell Applets in the North
region. To prevent data-entry mistakes and costly lawsuits, we want to prevent users from entering this
combination into the control. We can do it with the following routine:

 Private Sub fa_ValidateEdit(ByVal Row As Long, _
 ByVal Col As Long, _
 Cancel As Boolean)
 Dim rgn As String, prd As String
 ' collect the data we need
 Select Case Col
 Case 0
 prd = fg.EditText
 rgn = fg.TextMatrix(Row, 1)
 Case 1
 prd = fg.TextMatrix(Row, 0)
 rgn = fg.EditText
 End Select
 ' we can't sell Applets in the North Region...
 If prd = "Applets" And rgn = "North" Then
 MsgBox "Regulation #12333AS/SDA-23 " & _
 "Prevents us from selling " & prd & _

Outline Demo · 45

 " in the " & rgn & " Region. " & _
 "Please verify input."
 Cancel = True
 End If
 End Sub

The function starts by gathering the input that needs to be validated. Note that the values being checked are
retrieved using the EditText property. This is necessary because they have not yet been applied to the control.

If the test fails, the function displays a warning and then sets the Cancel parameter to True, which cancels the
edits and puts the cell back in edit mode so the user can try again.

Press F5 to run the project again, then try inputting some bad values. You will see that the control will reject
them.

Step 7: Clipboard Support
The Windows clipboard is a very useful device for transferring information between applications. Adding
clipboard support to VSFlexGrid projects is very easy. All it takes is the following code:

 Private Sub fg_KeyDown(KeyCode%, Shift%)
 Dim Cpy As Boolean, Pst As Boolean
 ' copy: ctrl-C, ctrl-X, ctrl-ins
 If KeyCode = vbKeyC And Shift = 2 Then Cpy = True
 If KeyCode = vbKeyX And Shift = 2 Then Cpy = True
 If KeyCode = vbKeyInsert And Shift = 2 Then Cpy = True

 ' paste: ctrl-V, shift-ins
 If KeyCode = vbKeyV And Shift = 2 Then Pst = True
 If KeyCode = vbKeyInsert And Shift = 1 Then Pst = True
 ' do it
 If Cpy Then
 Clipboard.Clear
 Clipboard.SetText fa.Clip
 ElseIf Pst Then
 fg.Clip = Clipboard.GetText
 End If
End Sub

The routine handles all standard keyboard commands related to the clipboard: CTRL-X, CTRL-C, or CTRL-
INS to copy, and CTRL-V or SHIFT-INS to paste. The real work is done by the Clip property, which takes
care of copying and pasting the clipboard text over the current range.

Another great Windows feature that is closely related to clipboard operations is OLE Drag and Drop.
VSFlexGrid has two properties, OLEDragMode and OLEDropMode, that help implement this feature. Just
set both properties to their automatic settings and you will be able to drag selections by their edges and drop
them into other applications such as Microsoft Excel, or drag ranges from an Excel spreadsheet and drop them
into the VSFlexGrid control.

Press F5 to run the project again, then try copying and pasting some data. You will notice that it is possible to
paste invalid data, because our paste code does not do any data validation. This is left as an exercise for the
reader.

Outline Demo
This sample shows how you can use the VSFlexGrid as an outliner to display structured (or hierarchical) data.

When used as an outliner, the VSFlexGrid control behaves like a Tree control, displaying nodes that can be
collapsed or expanded to show branches containing subordinate data.

46 · VSFlexGrid Tutorials

The sample reads several .INI files and presents each one as a node. Each file node has a collection of sub-
nodes that contains sections within the corresponding .INI file. Each section node contains branches that show
the tokens and settings stored in the corresponding section. Here is how the final project will look:

Step 1: Create the Control
Start a new Visual Basic project including VSFlexGrid 8.0 (if you don't know how to add OCX files to a
project, consult the Visual Basic documentation). The VSFlexGrid icon will be added to the Visual Basic
toolbox.

Create a VSFlexGrid object on the form by clicking the VSFlexGrid icon on the toolbox, then clicking on the
form and dragging until the object is the proper size.

Next, use the Visual Basic properties window to set the following control properties:

 (Name) = fg
 Cols = 3
 ExtendLastCol = True
 FixedCols = 0
 Rows = 1
 FormatString = "Node|Token|Setting"
 OutlineBar = flexOutlineBarComplete
 GridLines = flexGridNone
 MergeCells = flexMergeSpill
 AllowUserResising = flexResizeColumns

We set the OutlineBar property to be able to see the outline tree. You can create outlines without trees, but the
user will not be able to collapse and expand the nodes (unless you write code to do it).

We also set the MergeCells property to flexMergeSpill, so long entries may extend into adjacent empty cells.
This is often a good setting to use when building outlines.

Now the control is ready. We can start adding some code to it.

Step 2: Read the Data and Build the Outline
Double-click the form and add the following code to the Form_Load event:

 Private Sub Form_Load()

 ' suspend repainting to increase speed

Outline Demo · 47

 fg.Redraw = False

 ' populate the control
 AddNode "Win.ini"
 AddNode "System.ini"
 AddNode "vb.ini"

 ' expand outline, resize to fit, collapse outline
 fg.Outline -1
 fg.AutoSize 1, 2
 fg.Outline 1

 ' repainting is back on
 fg.Redraw = True
 End Sub

The routine starts by setting the Redraw property to False. This suspends repainting while we populate the
control, and increases speed significantly.

Then the AddNode routine is called to populate the control with the contents of three .INI files which you are
likely to have on your system: Win, System, and Vb. The AddNode routine is shown below.

Finally, the outline is totally expanded, the AutoSize method is called to adjust column widths to their
contents, and the outline is collapsed back to level 1 so the file and section nodes will be displayed.

The AddNode routine does most of the work. It reads an .INI file and populates the control, creating nodes
and branches according to the contents of the file. Here is the AddNode routine:

 Sub AddNode(inifile As String)
 Dim ln As String, p As Integer
 With fg

 ' create file node
 .AddItem inifile
 .IsSubtotal(Rows - 1) = True
 .Cell(flexcpFontBold, Rows - 1, 0) = True

 ' read ini file
 Open "c:\windows\" & inifile For Input As #1
 While Not EOF(1)
 Line Input #1, ln

 ' if this is a section, add node
 If Left(ln, 1) = "[" Then
 .AddItem Mid(ln, 2, Len(ln) - 2)
 .IsSubtotal(Rows - 1) = True
 .RowOutlineLevel(Rows - 1) = 1
 .Cell(flexcpFontBold, Rows - 1, 0) = True

 ' if this is regular data, add branch
 ElseIf InStr(ln, "=") > 0 Then
 p = InStr(ln, "=")
 .AddItem vbTab & Left(ln, p - 1) & vbTab & Mid(ln, p +
1)
 End If
 Wend
 Close #1
 End With
 End Sub

The AddNode routine is a little long, but it is fairly simple. It starts by adding a row containing the name of
the .INI file being read. It marks the row as a subtotal using the IsSubtotal property so the control will
recognize it as an outline node.

48 · VSFlexGrid Tutorials

Next, the routine reads the INI file line by line. Section names are enclosed in square brackets. The code adds
them to the control and then marks them as subtotals much the same way it marked the file name. The
difference is that here it also sets the RowOutlineLevel property to 1, indicating this node is a child of the
previous level-0 node (the one that contains the file name).

Finally, lines containing data are parsed into tokens and settings and then added to the control. They are not
marked as subtotals.

Step 3: Use the Outline
Press F5 to run the project, and you will see the outline in action. If you click on one of the nodes, it will
expand or collapse to show or hide the data under it.

You may also shift-click on a node to expand the entire outline to the node's level, or shift-ctrl-click on a node
to collapse the entire outline to that level. For example, if you shift-click on a file name, you will see all file
names and all sections, but no token data. If you shift-ctrl-click on a file name, you will see all file names, and
nothing else.

Step 4: Custom Mouse and Keyboard Handling
The VSFlexGrid control provides the expanding and collapsing for you, but you may extend and customize its
behavior. Every time a branch is expanded or collapsed, the control fires the BeforeCollapse and
AfterCollapse events so you may take actions in response to that. Furthermore, you may use the IsCollapsed
property to get and set the collapsed state of each branch in code.

For example, the following code allows users to expand and collapse outline branches by double-clicking on a
row itself, rather than on the outline bar. Here's the code to do it:

 Private Sub fg_DblClick()
 Dim r As Long
 With fg
 r = .Row
 If .IsCollapsed(r) = flexOutlineCollapsed Then
 .IsCollapsed(r) = flexOutlineExpanded
 Else
 .IsCollapsed(r) = flexOutlineCollapsed
 End If
 End With
 End Sub

The code checks the current row. If it is collapsed, then it expands it. Otherwise, it collapses it. Collapsing a
detail row collapses its entire parent node.

We can use the same code to implement the keyboard interface. We just call the DblClick event handler from
the KeyPress handler:

 Private Sub fg_KeyPress(KeyAscii As Integer)
 If KeyAscii = vbKeyReturn Then fa_DblClick
 End Sub

This closes the Outline demo. Press F5 to run the project one last time and test the additional mouse and
keyboard handling.

Data Analysis Demo
This sample starts with a grid containing sales data for different products, regions, and salespeople, then adds
the following features:

• Dynamic layout (column order)

• Automatic sorting

Data Analysis Demo · 49

• Cell merging

• Automatic subtotals

• Outlining

Here is how the final application will look:

Step 1: Create the Control
Start a new Visual Basic project including VSFlexGrid 8.0 (if you don't know how to add OCX files to a
project, consult the Visual Basic documentation). The VSFlexGrid icon will be added to the Visual Basic
toolbox.

Create a VSFlexGrid object on the form by clicking the VSFlexGrid icon on the toolbox, then clicking on the
form and dragging until the object is the proper size.

Next, use the Visual Basic Property window to set the control name to fg.

Step 2: Initialize and populate the grid
There are many methods available to populate a VSFlexGrid control. Often, you will simply connect it to a
database using the DataSource property. Or you could load the data from a file using the LoadGrid method.
Finally, you may use the AddItem method to add rows or the Cell property to assign data to cells.

In this demo, we will generate some random data and assign it to the control using the Cell property. This is
done at the Form_Load event:

 Private Sub Form_Load()

 ' initialize the control
 fg.Cols = 4
 fg.FixedCols = 0
 fg.GridLinesFixed = flexGridExplorer
 fg.AllowUserResizing = flexResizeBoth
 fg.ExplorerBar = flexExMove

 ' define some sample data
 Const slProduct = "Product|Flutes|Saxophones|Drums|" & _
 "Guitars|Trombones|Keyboards|Microphones"
 Const slAssociate =
"Associate|John|Paul|Mike|Paula|Sylvia|Donna"
 Const slRegion = "Region|North|South|East|West"

50 · VSFlexGrid Tutorials

 Const slSales = "Sales|14323|2532|45342|43432|75877|4232|4543"

 ' populate the control with the data
 FillColumn fg, 0, slProduct
 FillColumn fg, 1, slAssociate
 FillColumn fg, 2, slRegion
 FillColumn fg, 3, slSales
 fg.ColFormat(3) = "#,###"

 End Sub

This routine uses a helper function called FillColumn that fills an entire column with data drawn randomly
from a list. This is a handy function for demos, and here is the code:

 Sub FillColumn(fg As VSFlexGrid, ByVal c As Long, ByVal s As
String)
 Dim r As Long, i As Long, cnt As Long
 ReDim lst(0) As String

 ' build list of data values
 cnt = 0
 i = InStr(s, "|")
 While i > 0
 lst(cnt) = Left(s, i - 1)
 s = Mid(s, i + 1)
 cnt = cnt + 1
 ReDim Preserve lst(cnt) As String
 i = InStr(s, "|")
 Wend
 lst(cnt) = s

 ' set values by randomly picking from the list
 fg.Cell(flexcpText, 0, c) = lst(0)
 For r = fg.FixedRows To fa.Rows - 1
 i = (Rnd() * 1000) Mod cnt + 1
 fg.Cell(flexcpText, r, c) = lst(i)
 Next
 ' do an autosize on the column we just filled
 fg.AutoSize c, , , 300
 End Sub

This concludes the first step. Press F5 to run the project, and you will see a grid loaded with data. Because the
ExplorerBar property is set to flexExMove, you may drag column headings around to reorder the columns.

The data presented is almost useless, however, because it is not presented in an organized way. We will fix
that next.

Step 3: Automatic Sorting
The first step in organizing the data is sorting it. Furthermore, we would like the data to be sorted
automatically whenever the user reorders the columns.

After the user reorders the columns, the VSFlexGrid control fires the AfterMoveColumn event. We will add
an event handler to sort the data using the Sort property. (Note that if the grid were bound to a database, you
would need to set the DataMode property to flexDMFree to be able to sort using the Sort property.)

Here is the code:

 Private Sub fg_AfterMoveColumn(ByVal Col As Long, Position As Long)
 ' sort the data from first to last column
 fg.Select 1, 0, 1, fa.Cols - 1
 fg.Sort = flexSortGenericAscending
 fg.Select 1, 0
 End Sub

Data Analysis Demo · 51

The AfterMoveColumn routine starts by selecting the first non-fixed row in the control using the Select
method. Next, it sorts the entire control in ascending order using the Sort property.

To start with a sorted grid, we will also add a call to the AfterMoveColumn routine to the end of the
Form_Load event handler.

 Private Sub Form_Load()
 ' initialize the control
 ' define some sample data
 ' populate the control with the data
 ' organize the data
 fg_AfterMoveColumn 0, 0
 End Sub

Press F5 to run the project again, and try reordering the columns by dragging their headings around.
Whenever you move a column, the data is automatically sorted, which makes it much easier to interpret. But
we're just getting started.

Step 4: Cell Merging
The ability to dynamically merge cells is one of the features that sets the VSFlexGrid apart from other grid
controls. Merging cells groups them visually, making the data easier to interpret.

To implement cell merging, we need only add two lines of code to the Form_Load event handler:

 Private Sub Form_Load()
 ' initialize the control
 ' define some sample data
 ' populate the control with the data
 ' set up cell merging (all columns)
 fg.MergeCells = flexMergeRestrictAll
 fg.MergeCol(-1) = True
 ' organize the data
 End Sub

The new code sets the MergeCells property, which works over the entire control, then sets the MergeCol
property to True for all columns (the -1 index may be used as a wildcard for all properties that apply to rows
and columns).

Press F5 again to run the project. This time it looks very different from a typical grid. The cell merging makes
groups of data stand out visually and help interpret the information.

Step 5: Automatic Subtotals
Now that the data is sorted and grouped, we will add code to calculate subtotals. With the subtotals, the user
will be able to see what products are selling more, in what regions, and which salespeople are doing a good
job.

Adding subtotals to a VSFlexGrid control is easy. The Subtotal method handles most of the details.

The subtotals need to be recalculated after each sort, so we will add the necessary code to the
AfterMoveColumn event. Here is the revised code:

 Private Sub fg_AfterMoveColumn(ByVal Col As Long, Position As Long)
 ' suspend repainting to get more speed
 fg.Redraw = False

 ' sort the data from first to last column
 fg.Select 1, 0, 1, fa.Cols – 1
 fg.Sort = flexSortGenericAscending
 fg.Select 1, 0

 ' calculate subtotals
 fg.Subtotal flexSTClear

52 · VSFlexGrid Tutorials

 fg.Subtotal flexSTSum, -1, 3, , 1, vbWhite, True
 fg.Subtotal flexSTSum, 0, 3, , vbRed, vbWhite, True
 fg.Subtotal flexSTSum, 1, 3, , vbBlue, vbWhite, True

 ' autosize
 fg.AutoSize 0, fa.Cols - 1, , 300

 ' turn repainting back on
 fg.Redraw = True
 End Sub

This code starts by setting the Redraw property to False. This suspends all repainting while we work on the
grid, which avoids flicker and increases speed.

Then the subtotals are calculated using the Subtotal method. The first call removes any existing subtotal rows,
cleaning up the grid. The next three calls add subtotal rows. We start by adding a grand total, then subtotals on
sales grouped by columns 0 and 1. (For now, we are assuming that sales figures will be on column 3.)

After adding the subtotals, we use the AutoSize method to make sure all columns are wide enough to display
the new data.

Finally, the Redraw property is set back to True, at which point the changes become visible.

If you run the project now, you will see that it almost works. The problem is that we are assuming that sales
figures will be on column 3, and if the user moves the figures to the left, the subtotals will just add up to zero.

To prevent this from happening, we can trap the BeforeMoveColumn event and prevent the user from moving
the sales figure column.

Here is the code:

 Private Sub fg_BeforeMoveColumn(ByVal Col As Long, Position As
Long)
 ' don't move sales figures
 If Col = fg.Cols - 1 Then Position = -1
 End Sub

We should also prevent the sales column from having merged cells. Merging these values could be confusing
because identical amounts would be merged and appear to be a single entry. To do this, we need to go back to
the Form_Load event handler and add one line of code:

 Private Sub Form_Load()
 ' initialize the control
 ' define some sample data
 ' populate the control with the data
 ' set up cell merging (all columns)
 fa.MergeCells = flexMergeRestrictAll
 fa.MergeCol(-1) = True
 fa.MergeCol(fa.Cols - 1) = False
 ' organize the data
 End Sub

We are done with the subtotals. If you run the project now, you will see how easy it is to understand the
picture behind the sales figures. You can organize the data by product, by region, or by salesperson and
quickly see who is selling what and where.

We are now almost done with this demo. The last step is to add outlining to the control, so users can hide or
show details and get an even clearer picture.

Step 6: Outlining
The outlining capabilities of the VSFlexGrid control rely on subtotals. When outlining, each subtotal row is
treated as a node that can be collapsed or expanded. Nested subtotals are treated as nested nodes. Any rows
that are not subtotal rows are treated as branches, which contain detail data.

Cell Flooding Demo · 53

Because we have already implemented subtotals, adding the outline capabilities is just a matter of adding one
more line of code to the Form_Load event handler. The new code sets the OutlineBar property, which
displays a tree structure with buttons that the user may click to collapse or expand the outline. Here is what the
Form_Load routine should look like by now:

 Private Sub Form_Load()
 ' initialize the control
 ' define some sample data
 ' populate the control with the data
 ' set up cell merging (all columns)
 ' set up outlining
 fg.OutlineBar = flexOutlineBarComplete
 ' organize the data
 End Sub

That concludes this demo. Run the project one last time and try clicking on the outline buttons. Clicking will
toggle the state of the node between collapsed and expanded. Shift-clicking or ctrl-shift-clicking will set the
outline level for the entire control.

Cell Flooding Demo
This example demonstrates how to use the Cell property to format individual cells. The demo uses flooding to
create a display combining numbers and bars.

Here is how the final application will look:

This project is very simple. It consists of a single routine, the Form_Load event handler. Here is the code,
followed by some comments:

 Private Sub Form_Load()
 Dim i As Long
 Dim max As Double

 ' initialize array with random data
 Dim count(1, 7) As Single
 For i = 0 To 7
 count(0, i) = Rnd * 100
 count(1, i) = Rnd * 100
 Next

 ' initialize control
 fg.Cols = 3
 fg.Rows = 9
 fg.FloodColor = RGB(100, 255, 100)
 fg.ColAlignment(0) = flexAlignCenterCenter
 fg.ColAlignment(1) = flexAlignRightCenter
 fg.ColAlignment(2) = flexAlignLeftCenter
 fg.Cell(flexcpText, 0, 0) = "Age Range"
 fg.Cell(flexcpText, 0, 1) = "Females"
 fg.Cell(flexcpText, 0, 2) = "Males"
 fg.ColFormat(-1) = "#.##"

54 · VSFlexGrid Tutorials

 ' make data bold
 fg.Cell(flexcpFontBold, 1, 1, _
 fg.Rows - 1, fa.Cols - 1) = True

 ' place text in cells, keep track of maximum
 For i = 0 To 7
 fg.Cell(flexcpText, i + 1, 0) = _
 10 * i & " - " & (10 * (i + 1) - 1)
 fg.Cell(flexcpText, i + 1, 1) = count(0, i)
 fg.Cell(flexcpText, i + 1, 2) = count(1, i)
 If count(0, i) > max Then max = count(0, i)
 If count(1, i) > max Then max = count(1, i)
 Next

 ' set each cell's flood percentage,
 ' using max to scale from 0 to -100 for column 1
 ' and from 0 to 100 for column 2:
 For i = 0 To 7
 fg.Cell(flexcpFloodPercent, i + 1, 1) = _
 -100 * count(0, i) / max
 fg.Cell(flexcpFloodPercent, i + 1, 2) = _
 100 * count(1, i) / max
 Next
 End Sub

The code starts by declaring and populating an array with random data. The data will be used later to populate
the control.

Then the control is initialized. The code sets the number of rows and columns, column alignments, column
titles, and the format that is to be used when displaying data. Note that when setting the ColFormat property,
the -1 index is used as a wildcard so the setting is applied to all columns.

The Cell property is then used to set the font of the scrollable area to bold. It takes only a single statement,
because the Cell property accepts a whole range as a parameter.

Next, the array containing the data is copied to the control (again using the Cell property). The code keeps
track of the maximum value assigned to any cell in order to scale the flood percentages later.

Finally, the Cell property is used one last time to set the flood percentages. The percentages on the first
column are set to negative values, which causes the bars to be drawn from right to left. The percentages on the
second column are set to positive values, which causes the bars to be drawn from left to right.

ToolTip Demo
The example below shows how you can use the MouseRow and MouseCol properties to implement tooltips
with text that changes as the mouse moves over the control.

 Sub fg_MouseMove(Button As Integer, Shift As Integer, _
 X As Single, Y As Single)
 Static r As Long, c As Long
 Dim nr As Long, nc As Long
 ' get coordinates
 nr = fg.MouseRow
 nc = fg.MouseCol
 ' update tooltip text
 If c <> nc Or r <> nr Then
 r = nr
 c = nc
 fg.ToolTipText = "Row:" & r & " Col:" & c
 End If
 ' other processing...
 End Sub

Printing Demo · 55

The code keeps track of the last cell for which tooltips were displayed, and refreshes the ToolTipText only
when needed. This is done to avoid flicker.

Printing Demo

The PrintGrid method is part of the VSFlexGrid control, and you may use it to print the grid contents directly
to the printer.

If you need more sophisticated printing, with print preview and the ability to combine several grids and other
elements such as tables and text in a single document, then you should use ComponentOne's VSPrinter
control, a separate ComponentOne product that is part of the VSVIEW product.

This sample shows how you can print a grid using either method. Both methods allow you to control page
breaks and to designate certain rows as "header" rows, which appear at the top of every page.

The example assumes you have a VSFlexGrid control named fg and a VSPrinter control named vp on your
form.

 Sub PrintFlexGridBuiltIn()
 fg.PrintGrid "My Grid"
 End Sub
 Sub PrintFlexGridOnVSPrinter()
 vp.StartDoc
 vp.RenderControl = fg.hWnd
 vp.EndDoc
 End Sub

The routines above are all you need in order to print simple reports. The first uses the built-in PrintGrid
method, and the second uses the VSPrinter control. The second method allows you to show the report on a
preview window, render it on the printer, or save it to a file.

For printing complex reports, the VSFlexGrid control exposes events that allow you to control page breaks
and to supply header rows which get printed at the top of each new page. The code below illustrates the use of
these events:

 ' BeforePageBreak: controls page breaks
 ' we assume we have subtotals above details,
 ' and prevent subtotal rows from
 ' being the last on a page
 Private Sub fg_BeforePageBreak(ByVal Row As Long, BreakOK As
Boolean)
 ' if this row is a subtotal heading, we can't break here
 If fg.IsSubtotal(Row) Then BreakOK = False
 End Sub

 ' GetHeaderRow: supplies header rows for new pages
 ' we assume we have title rows with RowData set to -1
 ' that we want to show
 ' above the data
 Private Sub fg_GetHeaderRow(ByVal Row As Long, HeaderRow As Long)
 Dim r As Long

 ' ignore if the top row is a header already
 If fg.RowData(Row) = -1 Then Exit Sub

 ' we need a header, so find one
 For r = fg.FixedRows To fa.Rows - 1
 If fg.RowData(r) = -1 Then
 HeaderRow = r
 Exit Sub
 End If
 Next
 End Sub

56 · VSFlexGrid Tutorials

OLE Drag and Drop Demo
This sample shows how to implement automatic and manual OLE drag and drop using VSFlexGrid 8.0.

OLE drag and drop can be a little confusing at first, because of all the properties, methods, objects and events
that may be involved in the process. However, you only need to handle a few of these events in order to make
OLE drag and drop work for you. This demo illustrates the basic concepts and procedures you will need.

Here is how the final application will look:

The three controls shown are OLE drag drop sources and targets. This means you can drag data from one
control to the others, or between any of the controls and external applications.

Step 1: Create the Controls
Start a new Visual Basic project including VSFlexGrid 8.0 (if you don't know how to add OCX files to a
project, consult the Visual Basic manual). The VSFlexGrid icon will be added to the Visual Basic toolbox.

Create two VSFlexGrid objects on the form by clicking the VSFlexGrid icon on the toolbox, then clicking on
the form and dragging until the objects are the proper size.

Set the name of the VSFlexGrid controls to fgDManual and fgDDAuto.

Now add a Microsoft Rich Textbox control to the form (register the Richtx32.ocx file if this control is not on
your custom control list).

Step 2: Initialize the Controls
We could have set the initial properties of the fgDDManual and fgDDAuto controls using the Visual Basic
properties window, but chose to do it using the Form_Load event instead. Here is the routine that initializes
the controls:

 Private Sub Form_Load()

 ' initialize manual control
 With fgDDManual
 .Cell(flexcpText, 0, 0) = "Manual"
 .FixedCols = 0
 .Editable = True
 .OLEDragMode = flexOLEDragManual
 .OLEDropMode = flexOLEDropManual
 End With

OLE Drag and Drop Demo · 57

 ' initialize auto control
 With fgDDAuto
 .Cell(flexcpText, 0, 0) = "Auto"
 .FixedCols = 0
 .Editable = True
 .OLEDragMode = flexOLEDragAutomatic
 .OLEDropMode = flexOLEDropAutomatic
 End With

 End Sub

The code makes both grids editable, so you can type into them, and sets the OLEDragMode and
OLEDropMode properties to make each control an OLE drag-and-drop source and a target.

There is no need to initialize the Rich Editbox, since its OLEDragMode and OLEDropMode properties are
set to automatic by default.

That's all it takes to implement automatic OLE drag and drop. If you run the project now, you will be able to
drag text from the Rich Editbox into the fgDDAuto grid. You may also drag files from the Window Explorer,
ranges from Microsoft Excel, or text from Microsoft Word.

You can also drag selections from the fgDDAuto grid into any OLE drop target (including other areas of the
same control). To do this, select a range and move the mouse cursor to an edge around the selection. The
cursor will turn into a default OLE drag cursor, as the picture below shows. Click the left mouse button and
start dragging. The cursor will give you visual feedback whenever you move it over an OLE drop target.

As you can see, implementing automatic OLE drag and drop is easy. Just set the OLEDragMode and
OLEDropMode properties to automatic and you are done.

Sometimes you may want to customize the way in which OLE drag and drop works. This sample shows how
you can do that by customizing both the drag (OLE source) behavior and the drop (OLE target) behavior of
the fgDDManual control.

Step 3: Manual OLE Drag
We will customize the behavior of the fgDDManual control as an OLE drag source in two ways:

1. We will initiate dragging whenever the user clicks on the current cell, and

2. We will add a copyright notice to the contents being dragged from the control.

Because the OLEDragMode property of the fgDDManual control is set to flexOLEDragManual, you need to
initiate the OLE dragging operation with code, using the OLEDrag method. To do this we will add code to
handle the BeforeMouseDown event. When the user clicks on the active cell, we call the OLEDrag method.
Here is the code:

 Private Sub fgDDManual_BeforeMouseDown(ByVal Button As
 Integer, _
 ByVal Shift As Integer, _
 ByVal X As Single, ByVal Y As Single, _
 Cancel As Boolean)
 With fgDDManual

58 · VSFlexGrid Tutorials

 ' if the click was on the active cell
 ' start dragging
 If .MouseRow = .Row And .MouseCol = .Col Then

 ' use OLEDrag method to start manual
 ' OLE drag operation
 ' this will fire the OLEStartDrag event,
 ' which we will use
 ' to fill the DataObject with the data we
 ' want to drag.

 .OLEDrag

 ' tell grid control to ignore mouse
 ' movements until the
 ' mouse button goes up again
 Cancel = True
 End If
 End With
 End Sub

The code above checks whether the user clicked on the active cell. If so, it calls the OLEDrag method and sets
the Cancel parameter to True.

Note that we have not specified what the data is. In automatic mode, the control assumed that you wanted to
drag the current selection. In manual mode, you are responsible for providing the data.

When the OLEDrag method is called, the control fires the OLEStartDrag event, which gives you access to a
DataObject object. You must store the data that will be dragged into the DataObject so that the target object
can get to it. Here is the code:

 Private Sub fgDDManual_OLEStartDrag(Data As
VSFlex8Ctl.vsDataObject, AllowedEffects As Long)

 ' set contents of data object for manual drag
 Dim s$
 s = fgDDManual.Clip & vbCrLf & "Copyright 2000 ComponentOne"
 Data.SetData s, vbCFText

 End Sub

The code takes the current selection (contained in the Clip property), appends a copyright notice to it, and
then assigns it to the Data parameter. This is the data that will be exposed to the OLE drop targets.

If you run the project now, and type some data into the fgDDManual control, you will be able to drag it to
one of the other controls on the form. Notice how the copyright notice gets appended to the selection when
you make the drop.

Step 4: Manual OLE Drop
We will customize the behavior of the fgDDManual control as an OLE drop target so that when a list of files
is dropped, it opens the first file on the list and displays the contents of the first 10 lines in that file. (The default
behavior is to treat lists of files as text, and paste the file names.)

When the user drops an OLE data object on a VSFlexGrid control with the OLEDropMode property set to
flexOLEDropManual, the control fires the OLEDragDrop event. The data object being dropped is passed as a
parameter (Data) that you may query for the type of data you want.

The routine below checks to see if Data contains a list of files. If so, it opens the first file on the list and reads
the contents of its first 10 lines. If the Data parameter does not contain any files, then the routine tries to get its
text contents. Either way, the routine transfers the data to the grid using the Clip property.

Visual C++ MFC Demo · 59

Here is the routine:

 Private Sub fgDDManual_OLEDragDrop(Data As VSFlex8Ctl.vsDataObject,
_
 Effect As Long, _
 ByVal Button As Integer, _
 ByVal Shift As Integer, _
 ByVal X As Single, ByVal Y As Single)
 Dim r As Long, c As Long, i As Integer, s As String

 With fgDDManual

 ' get drop location
 r = .MouseRow
 c = .MouseCol

 ' if we're dropping files, open the file
 ' and paste contents
 If Data.FileCount > 0 Then
 On Error Resume Next
 Open Data.Files(0) For Input As #1
 For i = 0 To 10
 Line Input #1, s
 .Cell(flexcpText, r + i, c) = s
 Next
 Close #1

 ' drop text using the Clip property
 ElseIf Data.GetFormat(vbCFText) Then
 s = Data.GetData(vbCFText)
 .Select r, c, .Rows - 1, .Cols - 1
 .Clip = s
 .Select r, c

 ' we don't accept anything else
 Else
 MsgBox "Sorry, we only accept text and files..."
 End If
 End With
 End Sub

That concludes this demo. Run the project again and try dragging and dropping between the controls and
other applications.

Visual C++ MFC Demo

The VSFlexGrid 8.0 documentation is geared toward Visual Basic users. However, many other development
environments are capable of hosting ActiveX controls, including Microsoft Visual C++, Visual J++, Internet
Explorer, Microsoft Access, and others.

This demo shows the basic techniques you will need to use VSFlexGrid with Visual C++ in MFC projects.
(The Using VSFlexGrid in Visual C++ section of the documentation shows how to use VSFlexGrid in non-
MCF applications.) To follow this demo, you must know how to use the Visual C++ development
environment and you must also know C++.

The Visual C++ sample project is similar to the Visual Basic Outline Demo that is also a part of this
documentation, but it adds a few extra bells and whistles (such as cell pictures), just to show how this is done
in C++. The sample reads several INI files and presents each one as a node. Each file node has a collection of
sub-nodes that contain sections within the corresponding INI file. Each section node contains branches that
show the tokens and settings stored in the corresponding section.

Here is what the final application will look like:

60 · VSFlexGrid Tutorials

Step 1: Create the project
Start Microsoft Visual C++ and select File|New. You will see a tabbed dialog that lists the types of files you
may create.

Select the Projects tab, then click the MFC AppWizard (EXE) option and type the path where you want to
place the new project. Also type in the project name, OutlineC.

Click OK and the MFC App Wizard will appear. On the first page, click the Dialog Based option button.
Click Finish to accept all other defaults and create the project. You will see a dialog with some information
about the new project. Click OK.

Step 2: Add the VSFlexGrid Control to the Project
Now that the project has been created, add the VSFlexGrid control to the project. (This is equivalent to adding
the control to the Visual Basic toolbox.) The exact steps may vary a little depending on the version of Visual
C++ you are using.

In VC++ 5, select the Project | Add and Controls menu. You will see a list of elements that you can add to
the project. Select Registered ActiveX Controls by double clicking it. A list of registered ActiveX controls will
appear. If the VSFlexGrid control does not appear on the list, you need to register it.

Select the ComponentOne VSFlexGrid control, then click Insert.

You will see a dialog informing you of the classes that will be generated by the Wizard: CvsFlexGrid,
COleFont, and COlePicture. These classes are wrappers that the Wizard creates for you based on information
it retrieves from the control's type library. Click OK to proceed, then Close to dismiss the components dialog.

Go to the VC++ workspace window and select the Files pane. You will see that VC++ added a few files to the
project, including vsflexgrid.h and vsflexgrid.cpp. If you open these files, you will see that they define members to
access every property and method of the underlying object. For example, the Row property of the VSFlexGrid
ActiveX control is read or set using the GetRow and SetRow methods of the CvsFlexGrid C++ class.

Step 3: Create the VSFlexGrid Control
Go to the VC++ workspace window and select the Resources pane. Because this is a dialog-based MFC
application, you can design the application by dragging and dropping controls on the main dialog (or form).
It's almost like designing a form in Visual Basic.

Open the main dialog (called IDD_OUTLINEC_DIALOG) by double clicking on it. Then delete the TODO
label, pick a VSFlexGrid control from the toolbox and drop it on the form. Adjust the size of the dialog and
the control until you are happy with the layout.

Now right-click on the control and select Properties from the popup menu. Select the All pane and click the
pushpin to keep the window on top of the others while you initialize the control's properties.

Visual C++ MFC Demo · 61

Use the properties window to apply these settings (the same we used in the Outline demo):

 Cols = 3
 ExtendLastCol = True
 FixedCols = 0
 Rows = 1
 FormatString = "Node|Token|Setting"
 OutlineBar = flexOutlineBarComplete
 GridLines = flexGridNone
 MergeCells = flexMergeSpill
 AllowUserResising = flexResizeColumns

Save your project and press F5 to run it. Visual C++ will build the project and you will see that the control is
created and initialized properly. Click OK or Cancel when you are done.

Step 4: Create a Member Variable to Access the Control
Remember how the wizard created wrapper classes to enable easy access to the control? Now we will create a
member variable m_fg of type CvsFlexGrid. This variable will be attached to the control on the form, and it
will allow us to read and set the object's properties, trap events and so on.

Return to the VC++ workspace window and select the Resources pane. Open the main dialog (called
IDD_OUTLINEC_DIALOG) by double clicking on it.

Now hold down the CONTROL key and double-click on the VSFlexGrid control. You will see a dialog
prompting you to enter a variable name. Type m_fg and click OK. The Wizard will create the variable and
initialize it for you.

Step 5: Read the Data and Build the Outline
In the Outline sample, we placed the code to read the data in the Form_Load event. In this sample we will use
the OK button instead.

Open the dialog in the Visual C++ resource editor, then type CTRL-W (for Wizard). You will see a dialog
that lets you add event handlers to each element on the form.

On the Object Ids list, select IDOK. On the Messages list, select BN_CLICKED. Now click the Add
Function button, and then the Edit Code button.

This will open the code editor. You will see that the Wizard already added the function declaration for you.
Now type the following code:

 void COutlineCDlg::OnOK()
 {
 // TODO: Add extra validation here
 // comment the following line to avoid closing the
 // dialog when the user clicks OK:
 //CDialog::OnOK();
 // initialize variant to use as optional parameter
 COleVariant varDefault;
 V_VT(&varDefault) = VT_ERROR;
 // suspend repainting to increase speed
 m_fg.SetRedraw(FALSE);

 // populate the control
 AddNode("Win.ini");
 AddNode("System.ini");
 AddNode("vb.ini");

 // expand outline, resize to fit, collapse outline
 m_fg.Outline(-1);
 COleVariant vCol((short)2, VT_I2);
 m_fg.AutoSize(1, vCol, varDefault, varDefault);

62 · VSFlexGrid Tutorials

 m_fg.Outline(1);

 // repainting is back on
 m_fg.SetRedraw(TRUE);
 }

The first thing to notice is that you should comment out the line that calls the default handler for this event
(CDialog::OnOK()). The default handler closes the dialog when the user clicks OK, which is not what we
want here.

Next, we declare a varDefault variable of type variant and initialize it with type VT_ERROR.

This is necessary because many of the methods in the VSFlexGrid control take optional parameters. In Visual
Basic, optional means you don't have to supply them at all. In Visual C++, optional means you don't have to
supply the value, but the parameter must still appear in the function calls. This is what the varDefault variable
does: it is a parameter without a value. (You may prefer to modify the CvsFlexGrid wrapper classes and
overload the methods to user friendlier parameter lists. We chose not to do it here to keep the example simple.)

The code then calls the AddNode function to populate the grid, just like the Visual Basic version of the
program did. The AddNode function will be discussed later.

Finally, the code calls the AutoSize method, which takes three variant parameters. One of them holds the
value 2 (the last column to be autosized) and the others use varDefault, which means the control will use
default values.

Like before, the AddNode routine does most of the work. It reads an INI file and populates the control,
creating nodes and branches according to the contents of the file. Here is the C++ version of the AddNode
routine (remember to add its declaration to the OutlineCDlg.h file):

 void COutlineCDlg::AddNode(LPSTR inifile)
 {
 long row;

 // initialize variant to use as optional parameter
 COleVariant varDefault;
 V_VT(&varDefault) = VT_ERROR;

 // create file node
 m_fg.AddItem(inifile, varDefault);
 row = m_fg.GetRows() - 1;
 m_fg.SetIsSubtotal(row, TRUE);
 m_fg.Select(row, 0, varDefault, varDefault);
 m_fg.SetCellFontBold(TRUE);

 // read ini file
 CString fn = (CString)"c:\\windows\\" + (CString)inifile;
 FILE* f = fopen(fn, "rt");
 while (f && !feof(f)) {
 char ln[201];
 fgets(ln, 200, f);

 // if this is a section, add section node
 if (*ln == '[') {
 char* p = strchr(ln, ']');
 if (p) *p = 0;
 m_fg.AddItem(ln + 1, varDefault);
 row = m_fa.GetRows() - 1;
 m_fg.SetIsSubtotal(row, TRUE);
 m_fg.SetRowOutlineLevel(row, 1);
 m_fg.Select(row, 0, varDefault, varDefault);
 m_fg.SetCellFontBold(TRUE);

 // if this is regular data, add branch
 } else if (strchr(ln, '=')) {

Visual C++ MFC Demo · 63

 char* p = strchr(ln, '=');
 *p = 0;
 CString str = (CString)"\t" + (CString)ln +
 (CString)"\t" + (CString)(p + 1);
 m_fg.AddItem(str.GetBuffer(0), varDefault);
 }
 }
 if (f) fclose(f);
}

This routine is a line-by-line translation of the Visual Basic AddNode routine presented in the Outline demo.
It uses the MFC CString class to create some of the strings, and a few additional variants for parameters.

The routine starts by adding a row containing the name of the INI file being read. It marks the row as a
subtotal using the SetIsSubtotal method so the control will recognize it as an outline node.

Next, the routine reads the INI file line by line. Section names are enclosed in square brackets. The code adds
them to the control and marks them as subtotals the same way it marked the file name. The difference is that
here the SetRowOutlineLevel method is used to indicate that this node is a child of the previous level-0 node
(the one that contains the file name).

Finally, lines containing data are parsed into token and setting and then added to the control. They are not
marked as outline nodes.

Step 6: Use the Outline
Press F5 to run the project, click the OK button, and you will see the outline in action. If you click on one of
the nodes, it will expand or collapse to show or hide the data under it. You may also SHIFT-click on a node to
expand the entire outline to the node's level, or SHIFT-CTRL-click on a node to collapse the entire outline to
that level. For example, if you SHIFT-click on a file name, you will see all file names and all sections, but no
token data. If you SHIFT-CTRL-click on a file name, you will see all file names, and nothing else.

Step 7: Custom Mouse and Keyboard Handling
To add custom mouse and keyboard handling similar to those implemented in the Visual Basic version of the
Outline demo, we need to handle the DblClick and KeyPress events.

Adding the event handlers is easy: click CTRL-W to invoke the Wizard, select the VSFLEXGRID1 object on
the Object Ids list, then select each event and click the Add Function button. When you are done, click the
Edit Code button and type the following code:

 #define flexOutlineExpanded 0
 #define flexOutlineSubtotals 1
 #define flexOutlineCollapsed 2

 void COutlineCDlg::OnDblClickVsflexgrid1()
 {
 // double clicking on a row expands or collapses it
 long r = m_fg.GetRow();
 if (m_fg.GetIsCollapsed(r) == flexOutlineCollapsed)
 m_fg.SetIsCollapsed(r, flexOutlineExpanded);
 else
 m_fg.SetIsCollapsed(r, flexOutlineCollapsed);
 }
 void COutlineCDlg::OnKeyPressVsflexgrid1(short FAR* KeyAscii)
 {
 if (*KeyAscii == VK_RETURN) {
 OnDblClickVsflexgrid1();
 *KeyAscii = 0;
 }
 }

64 · VSFlexGrid Tutorials

Again, the code is a line-by-line translation of the Visual Basic Outline example.

Step 8: Cell Pictures
The final step shows how you can add cell pictures using C++.

First of all, you need to use the VC++ resource editor and add two bitmap resources to the project. Make the
bitmaps approximately 15 by 15 pixels in size and name them IDB_FILE and IDB_SECTION.

Then, make the following changes to the AddNode routine (the changes are marked in boldface):

 #include <afxctl.h>
 void COutlineCDlg::AddNode(LPSTR inifile)
 {
 long row;

 // initialize pictures
 CPictureHolder picFile, picSection;
 picFile.CreateFromBitmap(IDB_FILE);
 picSection.CreateFromBitmap(IDB_SECTION);

 // initialize variant to use as optional parameter

 // create file node
 m_fg.SetCellFontBold(TRUE);
 LPDISPATCH pPic = picFile.GetPictureDispatch();
 m_fg.SetCellPicture(pPic);
 pPic->Release();

 // read ini file

 // if this is a section, add section node
 m_fg.SetCellFontBold(TRUE);
 m_fg.SetCellPicture(picSection.GetPictureDispatch());

 // if this is regular data, add branch
 }
 if (f) fclose(f);
}

The first line added includes the MFC header file afxctl.h. This file defines CPictureHolder, a handy class for
manipulating OLE pictures. The next three lines added declare a CPictureHolder variable for each bitmap,
and load the bitmaps using the CreateFromBitmap method.

Finally, the SetCellPicture method is used to assign the pictures to cells that are file and section nodes.

This concludes this demo. Run the project once again to see the final result.

VSFlexString Introduction · 65

VSFlexString Introduction

The VSFlexString control allows you to incorporate regular-expression text matching into your applications.
This allows you to parse complex text easily, or to offer regular expression search-and-replace features such as
those found in professional packages like Microsoft Word, Visual C++, and Visual Basic.

VSFlexString looks for text patterns on its Text property, and lets you inspect and change the matches it finds.
The text patterns are specified through the Pattern property, using a regular expression syntax similar to the
ones used in Unix systems.

The usual sequence of steps involved in using the VSFlexString controls is this:

1. Assign the string containing the text you want to work on to the Text property.

2. Assign a string containing a regular expression to the Pattern property. At this point, the
VSFlexString control will automatically find all the matches it can.

3. Loop through the matches found, from zero to MatchIndex - 1.

4. For each match, perform some operation using the MatchString, MatchStart, and MatchLength
properties.

For example, suppose you want to scan an HTML string and locate all the HTML tags in it. A good pattern to
use in this case would be the string "<[^>]*>", which means "a less-than sign, followed by any number of
characters different than a greater-than sign, followed by a greater-than sign". The syntax for the regular
expressions that describe patterns is explained in detail in later sections.

After assigning the HTML text to the Text property and the "<[^>]*>" string to the Pattern property, the
VSFlexString control will automatically find as many matches as it can, and expose them to your application
through the Match* properties. The picture below illustrates this:

The picture shows the Text and Pattern properties. Below the strings, you can see the six matches that were
found (the number of matches found is returned in the MatchCount property). The MatchString property
returns an array of strings, indexed from zero to MatchCount - 1, containing the text in each match. The
MatchStart and MatchLength properties return the position and length of each match.

From this point on, you can work on the string either by modifying it directly or by changing the text in the
TagString property.

The VSFlexString control extends the concept of matching patterns by allowing you to specify tags in each
pattern. The tags are created by enclosing parts of the Pattern string in curly brackets ("{}"). This is useful
when the pattern contains parts that need special processing.

For example, still using the same HTML text, imagine you want to extract all text that is bold or italic. You
could use a pattern such as "<[BI]>{[^>]*}</[BI]>", which means "a less-than sign followed by a B or an I,
followed by a greater-than sign, followed by any number of characters different than a greater-than sign,
followed by a less-than sign, followed by a slash, followed by either a B or an I, followed by a greater-than
sign". The important thing to notice here is that the actual text (excluding the tags) is enclosed in curly brackets

66 · VSFlexString Introduction

and is thus recognized by the VSFlexString control as a tag. Tags can be accessed using the TagString,
TagStart, and TagLength properties. A pattern may contain any number of tags.

The picture below shows how the tags would be retrieved.

Note that the tag index is relative to the current match. Thus, the first tag ("easy") would be retrieved by setting
MatchIndex to zero and TagIndex to zero. The second tag ("Pattern Matching") would be retrieved by setting
MatchIndex to one and TagIndex to zero. You would set TagIndex to a number greater than zero only if your
pattern contained multiple tags.

The most important aspect of learning how to use the VSFlexString control is understanding and becoming
familiar with the regular expression syntax. The following topics describe VSFlexString Regular Expressions
and present a few possible uses for the control.

Regular Expressions
The regular expression syntax recognized by VSFlexString is based on the following special characters:

Char Description

^ Beginning of a string.

$ End of a string.

. Any character.

[list] Any character in list. For example, "[AEIOU]" matches any single
uppercase vowel.

[^list] Any character not in list. For example, "[^]" matches any
character except a space.

[A-Z] Any character between 'A' and 'Z'. For example, "[0-9]" matches
any single digit.

? Repeat previous character zero or one time. For example, "10?"
matches "1" and "10".

* Repeat previous character zero or more times. For example, "10*"
matches "1", "10", "1000", etc.

+ Repeat previous character one or more times. For example, "10+"
matches "10", "1000", etc.

\ Escape next character. This is required to any of the special
characters that are part of the syntax. For example "\.*\+\\"
matches ".*+\". It is also required to encode some special non-
printable characters (such as tabs) listed below.

{tag} Tag this part of the match so you can refer to it later using the
TagString property.

Regular Expressions · 67

In addition to the characters listed above, there are seven special characters encoded using the backslash.
These are listed below:

Code Description

\a Bell (Chr(7))

\b Backspace (Chr(8))

\f Formfeed (Chr(12))

\n New line (Chr(10), vbLf)

\r Carriage return (Chr(13), vbCr)

\t Horizontal tab (Chr(9), vbTab)

\v Vertical tab (Chr(11))

For example,

 "^stuff" ' any string starting with "stuff"
 "stuff$" ' any string ending with "stuff"
 "o.d" ' "old", "odd", "ord", etc
 "o[ld]d" ' "old" or "odd" only
 "o[^l]d" ' "odd", "ord", but not "old"
 "od?" ' "o" or "od"
 "od*" ' "o", "od", "odd"
 "od+" ' "od", "odd", etc
 "[A-Z][a-z]*" ' any uppercase word
 "[0-9]+" ' any stream of digits
 "\." ' decimal point (needs escape
 ' character)

 "[1-9]+[1-9]*" ' any stream of digits not
 ' starting with 0

 "[+\-]?[0-9]*[\.]?[0-9]*" ' any number with optional sign
 ' and decimal point
 ' (needs two escape characters)

One of the best ways to develop and quickly test your patterns is using the Visual Basic Properties window. If
you place a VSFlexString control on a form, then click on it and press F4, the Properties window will appear.
You can then type directly into the Text and Pattern properties and watch the MatchCount property change.
For example, if you type "[a-z]" into the Pattern property and "Hello World" into the Text property,
MatchCount will be set to 8 (the number of lower case character in the text). If you change the Pattern to "[A-
Za-z]*", the MatchCount property will change to 2 (the number of words in the text).

Note that if a pattern can match the string in more than one way, the longest match will prevail. For example,

 fs.Text = "testing, 1, 2, 3. Done testing."
 fs.Pattern = ".*,"
 Debug.Print fs.MatchCount; "["; fs.MatchString; "]"

This pattern means "any sequence of characters terminating in a comma". It is ambiguous, because the control
could break up the string in the following ways:

 testing, 1, 2, 3. Done testing. (Three matches)
 testing, 1, 2, 3. Done testing. (Two matches)
 testing, 1, 2, 3. Done testing. (Two matches)
 testing, 1, 2, 3. Done testing. (One match)

68 · VSFlexString Introduction

In such cases, the control will extend the match as far as it can, thus finding the longest match. The output will
be:

 1 [testing, 1, 2,]

Matching Demo

This demo shows one of the simplest uses for the VSFlexString control: retrieving information from text based
on patterns.

Suppose we have a text file containing client names and phone numbers, and want to retrieve the names of all
clients who are in the 415 area code.

Here is what the list looks like:

 ClientList = "John Doe: (415) 555-1212," & _
 "Mary Smith: (212) 555-1212," & _
 "Dick Tracy: (412) 555-1212," & _
 "Martin Long: (415) 555-1212," & _
 "Leo Getz: (510) 555-1212," & _
 "Homer Simpson: (415) 555-1212"

The most important part of the task is developing the Pattern string. It would definitely contain the string
"(415)", which is our criterion for filtering the data. But using "(415)" would produce a number of matches
consisting of the string "(415)", which is not very useful. So we extend the pattern to include everything before
and after the "(415)" up to the record delimiter, in this case a comma. The Pattern string would look like this:
"[^,]*(415)[^,]*".

Here is the code (fs is a VSFlexString control):

 fs.Text = ClientList
 fs.Pattern = "[^,]*(415)[^,]*"
 Debug.Print fs.MatchCount " match(es) found."
 For i = 0 to fs.MatchCount - 1
 Debug.Print "found: ["; fs.MatchString(i); "]"
 Next
And here is the result:
found: [John Doe: (415) 555-1212]
found: [Martin Long: (415) 555-1212]
found: [Homer Simpson: (415) 555-1212]

You could easily extend the Pattern string to take other delimiters into account. For example, to recognize
commas, tabs, and line breaks you would use "[^,\t\n\l]*(415)[^,\t\n\l]*".

Replacing Demo

This demo builds on the previous one by showing how you can modify the data after retrieving it.

Suppose the phone company decided to change all the 415 prefixes into 414, and we want to update our client
list to reflect this change.

To accomplish this using the VSFlexString control, we start by locating the information we want to change,
and then change it into the new value using the Replace property.

Here is the code:

 ClientList = "John Doe: (415) 555-1212," & _
 "Mary Smith: (212) 555-1212," & _
 "Dick Tracy: (412) 555-1212," & _
 "Martin Long: (415) 555-1212," & _
 "Leo Getz: (510) 555-1212," & _
 "Homer Simpson: (415) 555-1212"
 fs.Text = ClientList

Data-Cleaning Demo · 69

 fs.Pattern = "(415)"
 Debug.Print fs.MatchCount " matches found."
 fs.Replace = "(414)"
 Debug.Print fs.MatchCount " matches found."
 Debug.Print fs

And here is the result:

3 matches found.
0 matches found.
John Doe: (414) 555-1212,Mary Smith: (212) 555-1212,
Dick Tracy: (412) 555-1212,Martin Long: (414) 555-1212,
Leo Getz: (510) 555-1212,Homer Simpson: (414) 555-1212

Notice that the code prints the number of matches found twice. The first time, it reports three matches. The
second time, after the Replace statement, it reports no matches. This is because as soon as the replacement
takes place, all the "(415)" strings are gone, and thus there's nothing to match.

Data-Cleaning Demo

This demo shows a fairly advanced application of the VSFlexString control. It uses a pattern with tags to
retrieve information and automatically parse each match.

Tags are created by enclosing parts of the Pattern string in curly braces. By tagging the matches, you can
determine which parts of the string matched what parts of the pattern.

For example, say we have a database that contains customer’s names. But the same name may be stored as
"John Doe", "John Francis Doe", "John F. Doe", or "Doe, John", depending on who did the data entry. We
want to clean the data, converting all variations to the latter type ("Last, First").

Here is a small function that will accomplish this task:

 Private Function CleanName(name$) As String
 fs.Text = name
 fs.Pattern = "^{[A-Za-z]+}[^,]* {[A-Za-z]+}$"
 If fs.MatchCount > 0 Then
 CleanName = fs.TagString(1) & ", " & fs.TagString(0)
 Else
 CleanName = name
 End If
 End Function

The Pattern string needs some explanation. The first part, "^{[A-Za-z]+}", will match sequences of letters that
start at the beginning of the string. This will be a first name or a last name. The second part, "[^,]*" will match
any sequence of characters not including a comma and followed by a space. This will match the space between
a first and a last name, and also the optional middle name. However, the pattern will not match names already
in the "Last, First" format because of the comma. Finally, the "{[A-Za-z]+}$" part will match the last name.

Notice how the parts of the Pattern that match the first and last names are enclosed in curly brackets. This
allows us to retrieve their values and replace names in "First Last" and "First Middle Last" format with the
"Last, First" format we want. This is accomplished using the TagString property.

You may test the function using the Visual Basic debug (immediate mode) window:

 ? CleanName("John Doe")
 Doe, John
 ? CleanName("John Doe")
 Doe, John
 ? CleanName("Doe, John")
 Doe, John
 ? CleanName("John F. Doe")
 Doe, John
 ? CleanName("John Francis Doe")

70 · VSFlexString Introduction

 Doe, John
 ? CleanName("John Francis Jr.")
 John Francis Jr.

The function works as expected. Note that the last try fails, because the last name is not supposed to contain
periods. In this case, the function just returns the original string, which seems like a reasonable thing to do.

Writing the patterns is not difficult, but it does require some practice. This sample is a good starting point.

Calculator Demo

This demo shows how the VSFlexString control can be used to implement a mathematical expression
evaluator. You can use this project as is, to allow users to enter expressions instead of numeric constants, or
use it as a starting point for a more sophisticated evaluator with variables and custom functions.

Here is how the final application will look:

Step 1: Create the Controls

Start a new Visual Basic project. Right-click on the toolbox and select Components, then pick the
VSFlexString control from the list. The VSFlexString icon will be added to the Visual Basic toolbox. (If the
control does not appear on the list, it hasn't been registered on your computer. In this case, click the Browse
button and select the VSSTR8.OCX file to register it.)

Create a VSFlexString object on the form by clicking the icon on the toolbox, then dropping it on the form.
Also create two text boxes and a command button. Arrange the controls and resize the form so it looks like the
picture above.

Click on the VSFlexString control and use the Visual Basic properties window to change its name to "fs".

Step 2: Evaluating Expressions

This project consists mainly of a single recursive function that uses the VSFlexString control to evaluate the
expressions typed in the text box.

This function, which we will write later, needs to be called when the user clicks the button. Double-click the
button and type the following into the event handler:

 ' Evaluate the expression in Text1 and show the result in Text2
 Sub Command1_Click ()
 Text2 = Format(Eval(Text1), "0.00")
 End Sub

That leaves only the Eval function, which takes a string containing a mathematical expression as a parameter
and returns a value.

Calculator Demo · 71

Here is the code:

 Function Eval(ByVal s As String) As Double
 Dim s1$, s2$, s3$
 Dim v#
 ' get ready to parse
 fs = Trim(s) ' set breakpoint on this line

 ' interpret sub-expressions enclosed in parentheses
 fs.Pattern = "{.*}({[^()]*}){.*}"
 If fs.MatchCount > 0 Then
 s1 = fs.TagString(0) ' stuff to the left
 s2 = fs.TagString(1) ' sub-expression
 s3 = fs.TagString(2) ' stuff to the right
 Debug.Print "match: "; s1; " #<(># "; s2; " #<)># "; s3
 v = Eval(s2) ' evaluate sub-expression
 Eval = Eval(s1 & Format(v) & s3)
 Exit Function
 End If

 ' add and subtract (high-priority operators)
 fs.Pattern = "{.+}{[+-]}{.+}"
 If fs.MatchCount > 0 Then
 s1 = fs.TagString(0) ' operand 1
 s2 = fs.TagString(2) ' operand 2
 Debug.Print "match: "; s1; " #<+-># "; s2
 Select Case fs.TagString(1)
 Case "+": Eval = Eval(s1) + Eval(s2)

 Case "-": Eval = Eval(s1) - Eval(s2)
 End Select
 Exit Function
 End If

 ' multiply and divide (lower-priority operators)
 fs.Pattern = "{.+}{[*/]}{.+}"
 If fs.MatchCount > 0 Then
 s1 = fs.TagString(0) ' operand 1
 s2 = fs.TagString(2) ' operand 2
 Debug.Print "match: "; s1; " #<*/># "; s2
 Select Case fs.TagString(1)
 Case "*": Eval = Eval(s1) * Eval(s2)
 Case "/": Eval = Eval(s1) / Eval(s2)
 End Select
 Exit Function
 End If

 ' power (lowest-priority operator)
 fs.Pattern = "{.+}^{.+}"
 If fs.MatchCount > 0 Then
 s1 = fs.TagString(0) ' operand 1
 s2 = fs.TagString(1) ' operand 2
 Debug.Print "match: "; s1; "#<^>#"; s2
 Eval = Eval(s1) ^ Eval(s2)
 Exit Function
 End If

 ' number (nothing else matched, so this should be a number)
 fs.Pattern = "^-?[0-9]+\.?[0-9]*$"
 If fs.MatchCount > 0 Then
 Eval = Val(s)
 Else
 Debug.Print "Eval Error: "; fs: Beep
 End If
 End Function

72 · VSFlexString Introduction

This routine handles all basic operators taking into account their precedence (i.e., power before division before
sum). It also handles sub-expressions contained in parentheses.

The Eval function consists of a pattern that repeats itself. The VSFlexString is used to parse each expression
into its components, according to operator priority rules, and Eval is called recursively to evaluate each
component. This process continues until a number is found and evaluated using VB's built-in Val function.

The typical pattern has this format: "{.+}{[*/]}{.+}". The "{+.}" at the start and end of the pattern match runs
of one or more characters. The "{[*/]}" matches an operator that separates the left and right parts of the
expression.

Step 3: Trying it out

Press F5 to run the project and type an expression such as "(2*(5+3)+144^0.5)/7". Then click the command
button and the result (4) will appear on the second text box. The debug window will show a trace of the Eval
function. Here's a commented version of the output:

 match: (2* #<(># 5+3 #<)># +144^0.5)/7 found sub-expression
 match: 5 #<+-># 3 found +
 match: #<(># 2*8+144^0.5 #<)># /7 found sub-expression
 match: 2*8 #<+-># 144^0.5 found +
 match: 144 #<^># 0.5 found ^
 match: 2 #<*/># 8 found *
 match: 28 #<*/># 7 found /

The trace shows the order in which matches were found and operations executed. You may want to place a
breakpoint at the top of the Eval routine and see what happens after each match.

Step 4: Extending the Evaluator

As an exercise for the reader, try adding support for user-defined variables and functions such as Sin and Cos.

VSFlexGrid Properties, Events, and Methods · 73

VSFlexGrid Control

Before you can use a VSFlexGrid control in your application, you must add the VSFLEX8.OCX file to your
project. In Visual Basic, right-click the toolbox and select the VSFlexGrid control from the list. In Visual C++,
right-click on the dialog box and select the VSFlexGrid control from the list, or use the #import statement to
import the VSFLEX8.OCX file into the project.

To distribute applications you create with the VSFlexGrid control, you must install and register it on the user's
computer. The Setup Wizard provided with Visual Basic provides tools to help you do that. Please refer to the
Visual Basic manual for details.

VSFlexGrid Properties, Events, and Methods
All of the properties, events, and methods for the VSFlexGrid control are listed in the following tables.
Properties, events, and methods that apply only to this control, or that require special consideration when used
with it, are marked with an asterisk (*). These are documented in later sections. For documentation on the
remaining properties, see the Visual Basic documentation.

Properties

*AccessibleDescription Gets or sets the description of the control used by
accessibility client applications.

*AccessibleName Gets or sets the name of the control used by
accessibility client applications.

*AccessibleRole Gets or sets the role of the control used by accessibility
client applications.

*AccessibleValue Gets or sets the value of the control used by
accessibility client applications.

*Aggregate Returns an aggregate function (sum, average, etc.) for a
given range.

*AllowBigSelection Returns or sets whether clicking on the fixed area will
select entire columns and rows.

*AllowSelection Returns or sets whether the user can select ranges of
cells with the mouse and keyboard.

*AllowUserFreezing Returns or sets whether the user is allowed to freeze
rows and columns with the mouse.

*AllowUserResizing Returns or sets whether the user is allowed to resize
rows and columns with the mouse.

*Appearance Returns or sets the paint style of the control on an
MDIForm or Form object.

*ArchiveInfo Returns information from a VSFlex archive file.

*AutoResize Returns or sets whether column widths will be
automatically adjusted when data is loaded.

*AutoSearch Returns or sets whether the control will search for
entries as they are typed.

74 · VSFlexGrid Control

*AutoSearchDelay Returns or sets the delay, in seconds, before the
AutoSearch buffer is reset.

*AutoSizeMode Returns or sets whether AutoSize will adjust column
widths or row heights to fit cell contents.

*AutoSizeMouse Returns or sets whether columns should be resized to fit
when the user double-clicks on the header row.

*BackColor Returns or sets the background color of the non-fixed
cells.

*BackColorAlternate Returns or sets the background color for alternate rows
(set to 0 to disable).

*BackColorBkg Returns or sets the background color of the area not
covered by any cells.

*BackColorFixed Returns or sets the background color of the fixed rows
and columns.

*BackColorFrozen Returns or sets the background color of the frozen rows
and columns.

*BackColorSel Returns or sets the background color of the selected
cells.

*BottomRow Returns the zero-based index of the last row displayed
in the control.

*Cell Returns or sets cell properties for an arbitrary range.

*CellAlignment Returns or sets the alignment of text in the selected cell
or range.

*CellBackColor Returns or sets the background color of the selected cell
or range.

*CellButtonPicture Returns or sets the picture used in cell buttons.

*CellChecked Returns or sets whether a grid cell has a check mark in
it.

*CellFloodColor Returns or sets the color to be used for flooding a cell.

*CellFloodPercent Returns or sets the percentage of flooding for a cell.

*CellFontBold Returns or sets the Bold attribute of the font of the
selected cell or range.

*CellFontItalic Returns or sets the Italic attribute of the font of the
selected cell or range.

*CellFontName Returns or sets the name of the font of the selected cell
or range.

*CellFontSize Returns or sets the size of the font of the selected cell or
range.

*CellFontStrikethru Returns or sets the Strikethru attribute of the font of the
selected cell or range.

*CellFontUnderline Returns or sets the Underline attribute of the font of the
selected cell or range.

VSFlexGrid Properties, Events, and Methods · 75

*CellFontWidth Returns or sets the width of the font of the selected cell
or range.

*CellForeColor Returns or sets the foreground color of the selected cell
or range.

*CellHeight Returns the height of the selected cell, in twips. Also
brings the cell into view, scrolling if necessary.

*CellLeft Returns the left (x) coordinate of the selected cell
relative to the control, in twips. Also brings the cell into
view, scrolling if necessary.

*CellPicture Returns or sets the picture displayed in a selected cell
or range.

*CellPictureAlignment Returns or sets the alignment of the pictures in the
selected cell or range.

*CellTextStyle Returns or sets 3D effects for text in a selected cell or
range.

*CellTop Returns the top (y) coordinate of the selected cell
relative to the control, in twips. Also brings the cell into
view, scrolling if necessary.

*CellWidth Returns the width of the selected cell, in twips. Also
brings the cell into view, scrolling if necessary.

*ClientHeight Returns the height of the control's client area, in twips.

*ClientWidth Returns the width of the control's client area, in twips.

*Clip Returns or sets the contents of a range.

*ClipSeparators Returns or sets the characters to be used as column
and row separators in Clip strings.

*Col Returns or sets the zero-based index of the current
column.

*ColAlignment Returns or sets the alignment of the given column.

*ColComboList Returns or sets the list to be used as a drop-down on
the specified column.

*ColData Returns or sets a user-defined variant associated with
the given column.

*ColDataType Returns or sets the data type for the column.

*ColEditMask Returns or sets the input mask used to edit cells on the
specified column.

*ColFormat Returns or sets the format used to display numeric
values.

*ColHidden Returns or sets whether a column is hidden.

*ColImageList Sets or returns a handle to an ImageList to be used as
a source of pictures for a given column.

*ColIndent Returns or sets the indentation of the given column, in
twips.

76 · VSFlexGrid Control

*ColIndex Returns the column index that matches the given key.

*ColIsVisible Returns whether a given column is currently within view.

*ColKey Returns or sets a key used to identify the given column.

*ColPos Returns the left (x) coordinate of a column relative to the
edge of the control, in twips.

*ColPosition Moves a given column to a new position.

*Cols Returns or sets the total number of columns in the
control.

*ColSel Returns or sets the extent of a range of columns.

*ColSort Returns or sets the sorting order for each column (for
use with the Sort property).

*ColWidth Returns or sets the width of the specified column in
twips.

*ColWidthMax Returns or sets the maximum column width, in twips.

*ColWidthMin Returns or sets the minimum column width, in twips.

*ComboCount Returns the number of items in the editor's combo list.

*ComboData Returns the long value associated with an item in the
editor's combo list.

*ComboIndex Returns or sets the zero-based index of the current
selection in the editor's combo list.

*ComboItem Returns the string associated with an item in the editor's
combo list.

*ComboList Returns or sets the list to be used as a drop-down when
editing a cell.

*ComboSearch Returns or sets whether combo lists should support
smart searches.

*DataMember Returns or sets the data member.

*DataMode Returns or sets the type of data binding used by the
control when it is connected to a data source (read-only
or read/write).

*DataSource Returns or sets the data source.

*DragMode Returns/sets a value that determines whether manual or
automatic drag mode is used.

*Editable Returns or sets whether the control allows in-cell editing.

*EditMask Returns or sets the input mask used to edit cells.

*EditMaxLength Returns or sets the maximum number of characters that
can be entered in the editor.

*EditSelLength Returns or the number of characters selected in the
editor.

*EditSelStart Returns or sets the starting point of text selected in the
editor.

VSFlexGrid Properties, Events, and Methods · 77

*EditSelText Returns or sets the string containing the current
selection in the editor.

*EditText Returns or sets the text in the cell editor.

*EditWindow Returns a handle to the grid's editing window, or 0 if the
grid is not in edit mode.

*Ellipsis Returns or sets whether the control will display ellipsis
(...) after long strings.

Enabled Returns or sets a value that determines whether a form
or control can respond to user-generated events. See
the Visual Basic documentation for more information.

*ExplorerBar Returns or sets whether column headers are used to
sort and/or move columns.

*ExtendLastCol Returns or sets whether the last column should be
adjusted to fit the control's width.

*FillStyle Returns or sets whether changes to the Text or Format
properties apply to the current cell or to the entire
selection.

*FindRow Returns the index of a row that contains a specified
string or RowData value.

*FindRowRegex Returns the index of the row that contains a match or -1
if no match was found.

*FixedAlignment Returns or sets the alignment for the fixed rows in a
column.

*FixedCols Returns or sets the number of fixed (non-scrollable)
columns.

*FixedRows Returns or sets the number of fixed (non-scrollable)
rows.

*Flags Gets or sets flags that affect the behavior of the control.

*FlexDataSource Returns or sets a custom data source for the control.

*FloodColor Returns or sets the color used to flood cells.

*FocusRect Returns or sets the type of focus rectangle to be
displayed around the current cell.

Font Returns a Font object. See the Visual Basic
documentation for more information.

*FontBold Determines whether the font is bold.

*FontItalic Determines whether the font is italicized.

*FontName Returns or sets the name of the font.

*FontSize Determines the size of the font.

*FontStrikethru Determines the strikethru of the font.

*FontUnderline Determines the font is underlined.

*FontWidth Returns or sets the width of the font, in points.

78 · VSFlexGrid Control

*ForeColor Returns or sets the foreground color of the non-fixed
cells.

*ForeColorFixed Returns or sets the foreground color of the fixed rows
and columns.

*ForeColorFrozen Returns or sets the foreground color of the frozen rows
and columns.

*ForeColorSel Returns or sets the foreground color of the selected
cells.

*FormatString Assigns column widths, alignments, and fixed row and
column text.

*FrozenCols Returns or sets the number of frozen (editable but non-
scrollable) columns.

*FrozenRows Returns or sets the number of frozen (editable but non-
scrollable) rows.

*GridColor Returns or sets the color used to draw the grid lines
between the non-fixed cells.

*GridColorFixed Returns or sets the color used to draw the grid lines
between the fixed cells.

*GridLines Returns or sets the type of lines to be drawn between
non-fixed cells.

*GridLinesFixed Returns or sets the type of lines to be drawn between
fixed cells.

*GridLineWidth Returns or sets the width of the grid lines, in pixels.

*GroupCompare Returns or sets the type of comparison used when
grouping cells.

*HighLight Returns or sets whether selected cells will be
highlighted.

hWnd Returns a handle to a form or control. See the Visual
Basic documentation for more information.

*IsCollapsed Returns or sets whether an outline row is collapsed or
expanded.

*IsSearching Returns a value that indicates whether the grid is in
search mode.

*IsSelected Returns or sets whether a row is selected (for listbox-
type selections).

*IsSubtotal Returns or sets whether a row contains subtotals (as
opposed to data).

*LeftCol Returns or sets the zero-based index of the leftmost
non-fixed column displayed in the control.

*MergeCells Returns or sets whether cells with the same contents
will be merged into a single cell.

*MergeCellsFixed Allows users to set different merging criteria for fixed vs.
scrollable cells.

VSFlexGrid Properties, Events, and Methods · 79

*MergeCol Returns or sets whether a column will have its cells
merged.

*MergeCompare Returns or sets the type of comparison used when
merging cells.

*MergeRow Returns or sets whether a row will have its cells merged.

*MouseCol Returns the zero-based index of the column under the
mouse pointer.

MouseIcon Returns or sets a custom mouse icon. See the Visual
Basic documentation for more information.

MousePointer Returns or sets a value indicating the type of mouse
pointer displayed when the mouse is over a particular
part of an object at run time. See the Visual Basic
documentation for more information.

*MouseRow Returns the zero-based index of the row under the
mouse pointer.

*MultiTotals Returns or sets whether subtotals will be displayed in a
single row when possible.

*NodeClosedPicture Returns or sets the picture to be used for closed outline
nodes.

*NodeOpenPicture Returns or sets the picture to be used for open outline
nodes.

*OLEDragMode Returns or sets whether the control can act as an OLE
drag source, either automatically or under program
control.

*OLEDropMode Returns or sets whether the control can act as an OLE
drop target, either automatically or under program
control.

*OutlineBar Returns or sets the type of outline bar that should be
displayed.

*OutlineCol Returns or sets the column used to display the outline
tree.

*OwnerDraw Returns or sets whether and when the control will fire
the DrawCell event.

*Picture Returns a picture of the entire control.

*PicturesOver Returns or sets whether text and pictures should be
overlaid in cells.

*PictureType Returns or sets the type of picture returned by the
Picture property.

*Redraw Enables or disables redrawing of the VSFlexGrid
control.

*RightCol Returns the zero-based index of the last column
displayed in the control.

*RightToLeft Returns or sets whether text should be displayed from
right to left on Hebrew and Arabic systems.

80 · VSFlexGrid Control

*Row Returns or sets the zero-based index of the current row.

*RowData Returns or sets a user-defined variant associated with
the given row.

*RowHeight Returns or sets the height of the specified row in twips.

*RowHeightMax Returns or sets the maximum row height, in twips.

*RowHeightMin Returns or sets the minimum row height, in twips.

*RowHidden Returns or sets whether a row is hidden.

*RowIsVisible Returns whether a given row is currently within view.

*RowOutlineLevel Returns or sets the outline level for a subtotal row.

*RowPos Returns the top (y) coordinate of a row relative to the
edge of the control, in twips.

*RowPosition Moves a given row to a new position.

*Rows Returns or sets the total number of rows in the control.

*RowSel Returns or sets the extent of a range of rows.

*RowStatus Returns or sets a value that indicates whether a row has
been added, deleted, or modified.

*ScrollBars Returns or sets whether the control will display
horizontal or vertical scroll bars.

*ScrollTips Returns or sets whether tool tips are shown while the
user scrolls vertically.

*ScrollTipText Returns or sets the tool tip text shown while the user
scrolls vertically.

*ScrollTrack Returns or sets scrolling should occur while the user
moves the scroll thumb.

*SelectedRow Returns the position of a selected row when
SelectionMode is set to flexSelectionListBox.

*SelectedRows Returns the number of selected rows when
SelectionMode is set to flexSelectionListBox.

*SelectionMode Returns or sets whether the control will select cells in a
free range, by row, by column, or like a listbox.

*SheetBorder Returns or sets the color used to draw the border
around the sheet.

*ShowComboButton Returns or sets whether drop-down buttons are shown
when editable cells are selected.

*Sort Sets a sorting order for the selected rows using the
selected columns as keys.

*SortAscendingPicture Gets or sets a custom image to indicate the column sort
direction.

*SortDescendingPicture Gets or sets a custom image to indicate the column sort
direction.

VSFlexGrid Properties, Events, and Methods · 81

*SubtotalPosition Returns or sets whether subtotals should be inserted
above or below the totaled data.

*TabBehavior Returns or sets whether the tab key will move focus
between controls (VB default) or between grid cells.

*Text Returns or sets the contents of the selected cell or
range.

*TextArray Returns or sets the contents of a cell identified by a
single index.

*TextMatrix Returns or sets the contents of a cell identified by its row
and column coordinates.

*TextStyle Returns or sets 3D effects for displaying text in non-
fixed cells.

*TextStyleFixed Returns or sets 3D effects for displaying text in fixed
cells.

*TopRow Returns or sets the zero-based index of the topmost
non-fixed row displayed in the control.

*TreeColor Returns or sets the color used to draw the outline tree.

*Value Returns the numeric value of the current cell.

*ValueMatrix Returns the numeric value of a cell identified by its row
and column coordinates.

*Version Returns the version of the control currently loaded in
memory.

*VirtualData Returns or sets whether all data is fetched from the data
source at once or as needed.

*WallPaper Returns or sets a picture to be used as a background for
the control's scrollable area.

*WallPaperAlignment Returns or sets the alignment of the WallPaper
background picture.

*WordWrap Returns or sets whether text wider that its cell will wrap.

Methods

*AddItem Adds a row to the control.

*Archive Adds, extracts, or deletes files from a vsFlexGrid archive
file.

*AutoSize Resizes column widths or row heights to fit cell contents.

*BindToArray Binds the grid to an array of variants to be used as
storage.

*BuildComboList Returns a ColComboList string from data in a
recordset.

*CellBorder Draws a border around and within the selected cells.

82 · VSFlexGrid Control

*CellBorderRange Similar to the CellBorder method, but allows the user to
specify the range instead of using the selection
CellBorderRange.

*Clear Clears the contents of the control. Optional parameters
specify what to clear and where.

*Copy Copy selection to the Clipboard.

*Cut Cut selection to the Clipboard.

*DataRefresh Forces the control to re-fetch all data from its data
source.

*Delete Deletes the selection.

*DragRow Starts dragging a row to a new position.

*EditCell Activates edit mode.

*FinishEditing Finishes any pending edits and returns the grid to
browse mode.

*GetMergedRange Returns the range of merged cells that includes a given
cell.

*GetNode Returns an outline node object for a given subtotal row.

*GetNodeRow Returns the number of a row's parent, first, or last child
in an outline.

*GetSelection Returns the current selection ordered so that Row1 <=
Row2 and Col1 <= Col2.

*LoadArray Loads the control with data from a Variant array or from
another FlexGrid control.

*LoadGrid Loads grid contents and format from a file.

*LoadGridURL Loads grid contents and format from a URL (created
with SaveGrid).

*OLEDrag Initiates an OLE drag operation.

*Outline Sets an outline level for displaying subtotals.

*Paste Pastes the selection from the Clipboard.

*PrintGrid Prints the grid on the printer.

Refresh Forces a complete repaint of a form or control. See the
Visual Basic documentation for more information.

*RemoveItem Removes a row from the control.

*SaveGrid Saves grid contents and format to a file.

*Select Selects a range of cells.

*Subtotal Inserts rows with summary data.

Events

*AfterCollapse Fired after the user expands or collapses one or more
rows in an outline.

VSFlexGrid Properties, Events, and Methods · 83

*AfterDataRefresh Fired after reading data from the record source.

*AfterEdit Fired after the control exits cell edit mode.

*AfterMoveColumn Fired after a column is moved by dragging on the
ExplorerBar.

*AfterMoveRow Fired after a row is moved by dragging on the
ExplorerBar or using the DragRow method.

*AfterRowColChange Fired after the current cell (Row, Col) changes to a
different cell.

*AfterScroll Fired after the control scrolls.

*AfterSelChange Fired after the selected range (RowSel, ColSel)
changes.

*AfterSort Fired after a column is sorted by a click on the
ExplorerBar.

*AfterUserFreeze Fired after the user changes the number of frozen rows
or columns.

*AfterUserResize Fired after the user resizes a row or a column.

*BeforeCollapse Fired before the user expands or collapses one or more
rows in an outline.

*BeforeDataRefresh Fired before reading data from the record source.

*BeforeEdit Fired before the control enters cell edit mode.

*BeforeMouseDown Fired before the control processes the MouseDown
event.

*BeforeMoveColumn Fired before a column is moved by dragging on the
ExplorerBar.

*BeforeMoveRow Fired before a row is moved by dragging on the
ExplorerBar or using the DragRow method.

*BeforePageBreak Fired while printing the control to control page breaks.

*BeforeRowColChange Fired before the current cell (Row, Col) changes to a
different cell.

*BeforeScroll Fired before the control scrolls.

*BeforeScrollTip Fired before a scroll tip is shown so you can set the
ScrollTipText property.

*BeforeSelChange Fired before the selected range (RowSel, ColSel)
changes.

*BeforeSort Fired before a column is sorted by a click on the
ExplorerBar.

*BeforeUserResize Fired before the user starts resizing a row or column,
allows cancel.

*CellButtonClick Fired after the user clicks a cell button.

*CellChanged Fired after a cell's contents change.

*ChangeEdit Fired after the text in the editor has changed.

84 · VSFlexGrid Control

Click This event occurs when a user presses and then
releases the button of mouse device over an object.
See the Visual Basic documentation for more
information.

*ComboCloseUp Fired before the built-in combobox closes up.

*ComboDropDown Fired before the built-in combobox drops down.

*Compare Fired when the Sort property is set to flexSortCustom,
to allow custom comparison of rows.

DblClick This event occurs when the user double-clicks an
object.

*DrawCell Fired when the OwnerDraw property is set to allow
custom cell drawing.

*EndAutoSearch Fired when the grid leaves AutoSearch mode.

*EnterCell Fired when a cell becomes active.

*Error Fired after a data-access error.

*FilterData Fired after a value is read and before a value is written
to a recordset to allow custom formatting.

*GetHeaderRow Fired while printing the control to set repeating header
rows.

KeyDown This event occurs when a user presses a key while an
object has the focus.

*KeyDownEdit Fired when the user presses a key in cell-editing mode.

KeyPress This event occurs when the user presses and releases
an ANSI key.

*KeyPressEdit Fired when the user presses a key in cell-editing mode.

KeyUp Occurs when the user releases a key.

*KeyUpEdit Fired when the user presses a key in cell-editing mode.

*LeaveCell Fired before the current cell changes to a different cell.

MouseDown Occur when the user presses (MouseDown) a mouse
button.

MouseMove Occurs when the user moves the mouse.

MouseUp Occur when the user releases (MouseUp) a mouse
button.

*OLECompleteDrag Fired after a drop to inform the source component that
a drag action was either performed or canceled.

*OLEDragDrop Fired when a source component is dropped onto a
target component.

*OLEDragOver Fired when a component is dragged over another.

*OLEGiveFeedback Fired after every OLEDragOver event to allow the
source component to provide visual feedback to the
user.

VSFlexGrid Properties, Events, and Methods · 85

*OLESetCustomDataObject Fired after an OLE drag operation is started (manually
or automatically), allows you to provide a custom
DataObject.

*OLESetData Fired on the source component when a target
component performs the GetData method on the
source’s DataObject object.

*OLEStartDrag Fired after an OLE drag operation is started (manually
or automatically).

*RowColChange Fired when the current cell (Row, Col) changes to a
different cell.

*SelChange Fired after the selected range (RowSel, ColSel)
changes.

*SetupEditStyle Fired before the EditWindow is created, used to modify
window styles.

*SetupEditWindow Fired after the EditWindow has been created and
before it is displayed.

*StartAutoSearch Fired when the grid enters AutoSearch mode.

*StartEdit Fired when the control enters cell edit mode (after
BeforeEdit).

*StartPage Fired before each page while the grid is being printed.

*ValidateEdit Fired before the control exits cell edit mode.

VSFlexGrid Properties

AccessibleDescription Property

Gets or sets the description of the control used by accessibility client applications.

Syntax

Property AccessibleDescription As String

Data Type

String

See Also

VSFlexGrid Control (page 73)

AccessibleName Property

Gets or sets the name of the control used by accessibility client applications.

Syntax

Property AccessibleName As String

Data Type

String

86 · VSFlexGrid Control

See Also

VSFlexGrid Control (page 73)

AccessibleRole Property

Gets or sets the role of the control used by accessibility client applications.

Syntax

Property AccessibleRole As Variant

Data Type

Variant

See Also

VSFlexGrid Control (page 73)

AccessibleValue Property

Gets or sets the value of the control used by accessibility client applications.

Syntax

Property AccessibleValue As String

Data Type

String

See Also

VSFlexGrid Control (page 73)

Aggregate Property

Returns an aggregate function (sum, average, etc.) for a given range.

Syntax

val# = [form!]VSFlexGrid.Aggregate(Aggregate As SubtotalSettings, Row1 As Long, Col1 As Long, Row2 As
Long, Col2 As Long)

Remarks

This property is used to quickly calculate totals, averages and other aggregates over a range of cells.

The parameters for the Aggregate property are described below:

Aggregate As SubtotalSettings

This parameter defines the type of aggregate function to use. Valid settings for this parameter are:

Constant Value Description

flexSTNone 0 Outline only, no aggregate values

flexSTClear 1 Clear all subtotals

flexSTSum 2 Sum

flexSTPercent 3 Percent of total sum

AllowBigSelection Property · 87

Constant Value Description

flexSTCount 4 Row count

flexSTAverage 5 Average

flexSTMax 6 Maximum

flexSTMin 7 Minimum

flexSTStd 8 Standard deviation

flexSTVar 9 Variance

flexSTStdPop 10 Standard Deviation Population

flexSTVarPop 11 Variance Population

Row1 As Long, Col1 As Long, Row2 As Long, Col2 As Long

These parameters define the range over which the aggregate is to be calculated. If you set Row1 and Row2 to -
1, all selected rows are used (the selection does not have to continuous).

For example,

 Debug.Print fg.Aggregate(flexSTCount, fg.FixedRows, 2, fg.Rows - 1,
2)
 Debug.Print fg.Aggregate(flexSTSum, fg.FixedRows, 2, fg.Rows - 1,
2)
 Debug.Print fg.Aggregate(flexSTSum, -1, 2, -1, 2)

The first statement would print the number of numeric entries in column 2, and the second their sum.

The last statement would print the sum of all numeric entries in column 2 on currently selected rows. This type
of calculation is especially useful when the SelectionMode property is set to flexSelectionListBox (3).

Data Type

Double

See Also

VSFlexGrid Control (page 73)

AllowBigSelection Property

Returns or sets whether clicking on the fixed area will select entire columns and rows.

Syntax

[form!]VSFlexGrid.AllowBigSelection[= {True | False}]

Remarks

If AllowBigSelection is set to True, clicking on the top left fixed cell selects the entire grid.

Data Type

Boolean

Default Value

True

88 · VSFlexGrid Control

See Also

VSFlexGrid Control (page 73)

AllowSelection Property

Returns or sets whether the user can select ranges of cells with the mouse and keyboard.

Syntax

[form!]VSFlexGrid.AllowSelection[= {True | False}]

Remarks

Set this property to False to prevent users from extending the selection by clicking and dragging or using the
shift plus cursor keys. In this case, clicking and dragging the mouse will move the current cell, but will not
extend the selection.

This capability is useful when using the VSFlexGrid control to implement certain user interface elements such
as menus, property sheets, or explorer-style trees.

Data Type

Boolean

Default Value

True

See Also

VSFlexGrid Control (page 73)

AllowUserFreezing Property

Returns or sets whether the user is allowed to freeze rows and columns with the mouse.

Syntax

[form!]VSFlexGrid.AllowUserFreezing[= AllowUserFreezeSettings]

Remarks

Frozen cells can be selected and edited, but they remain visible when the user scrolls the contents of the
control. The AllowUserFreezing property determines whether the user can change the number of frozen rows
and columns by dragging the solid line between the frozen and scrollable areas of the grid.

The settings for the AllowUserFreezing property are described below:

Constant Value Description

flexFreezeNone 0 The user cannot change the number of frozen rows
or columns.

flexFreezeColumns 1 The user can change the number of frozen
columns.

flexFreezeRows 2 The user can change the number of frozen rows.

flexFreezeBoth 3 The user can change the number of frozen rows
and columns.

AllowUserResizing Property · 89

This property is especially useful when the grid is used as a data browser. It allows users to freeze the leftmost
columns of the data while they scroll the control to view the remaining columns.

The number of frozen rows and columns can be set or retrieved through the FrozenRows property and
FrozenCols properties. You may customize the appearance of the frozen areas of the grid using the
BackColorFrozen and ForeColorFrozen properties. The solid line between the frozen and scrollable areas of
the grid is drawn using the color specified by the SheetBorder property.

Data Type

AllowUserFreezeSettings (Enumeration)

Default Value

flexFreezeNone (0)

See Also

VSFlexGrid Control (page 73)

AllowUserResizing Property

Returns or sets whether the user is allowed to resize rows and columns with the mouse.

Syntax

[form!]VSFlexGrid.AllowUserResizing[= AllowUserResizeSettings]

Remarks

Valid settings for the AllowUserResizing property are:

Constant Value Description

flexResizeNone 0 The user may not resize rows or columns.

flexResizeColumns 1 The user may resize column widths.

flexResizeRows 2 The user may resize row heights.

flexResizeBoth 3 The user may resize column widths and row
heights.

flexResizeBothUniform 4 The user may resize column widths and row
heights. When a row height is resized, the new
height is applied to all rows.

To resize rows or columns, the mouse must be over the fixed area of the control, and close to a border between
rows or columns. The mouse pointer will then change into a sizing pointer and the user can drag the row or
column to change the row height or column width.

A group of columns is selected (from first to last row) and the user resizes one of them, all selected columns
are resized. The same applies to rows. To allow users to select entire rows and columns, set the
AllowBigSelection property to True.

If column sizing is allowed and the AutoSizeMouse property is set to True, users may double-click the
resizing area to resize a column so it will automatically fit the longest entry.

Rows with zero height and columns with zero width cannot be resized by the user. If you want to make them
very small but still resizable, set their height or width to one pixel, not to zero. For example:

 fa.ColWidth(5) = Screen.TwipsPerPixelX

90 · VSFlexGrid Control

The BeforeUserResize event is fired before resizing starts, and may be used to prevent resizing of specific rows
and columns. The AfterUserResize event is fired after resizing, and may be used to validate the user's action.

Data Type

AllowUserResizeSettings (Enumeration)

Default Value

flexResizeNone (0)

See Also

VSFlexGrid Control (page 73)

Appearance Property

Returns or sets the paint style of the control on an MDIForm or Form object.

Syntax

Property Appearance As AppearanceSettings

Remarks

Valid settings for the Appearance property are:

Constant Value Description

flexFlat 0 Flat appearance

flex3D 1 3D appearance

flex3Dlight 2 3D Light appearance

flexXPThemes 3 If the application is theme-enabled, the control paints
fixed cells using themes.

Notes on XP Themes

A visual style is included in the Windows XP release. In addition, other themes or visual styles are available in
the Windows XP Plus Pack. You can use helper libraries and application programming interfaces (APIs) to
incorporate a Windows XP visual style into an application with few code changes.

Windows XP applies a visual style to the non-client (frame and caption) area by default. To apply a visual
style to common controls in the client area, you must use version 6 or later of the ComCtl32.dll file.
ComCtl32.dll version 6 is not a redistributable system component. ComCtl32.dll version 6 contains both the
user controls and the common controls. By default, applications use the controls that are defined in the
User32.dll file. In addition, applications use the common controls that are defined in ComCtl32.dll version 5
by default.

To use the Windows XP visual styles from an application, you must add an application manifest file. This
application manifest file should specify that ComCtl32.dll version 6 be used if it is available. One of the
features that is included with this component is support for changing the appearance of controls in a window.
Therefore, you must follow two steps to enable the Windows XP theme or visual style in Visual Basic 6.0:

1. Call the InitCommonControls function.

2. Add an application manifest file.

Appearance Property · 91

Example:

1. Call the InitCommonControls function:

You must call the InitCommonControls function in the Form_Initialize event:

 Private Declare Sub InitCommonControls Lib "comctl32.dll" ()
 Private Sub Form_Initialize()
 InitCommonControls
 End Sub

Note: Do not call InitCommonControls in the Form_Load event. When you call InitCommonControls from
the Form_Load event, the form cannot load.

2. Add a manifest file to your application:

You must add a file named YourApp.exe.manifest to the same folder as your executable file. For example, if
your application is named Generic.exe, include a manifest file that is named Generic.exe.manifest. The
application manifest file has Extensible Markup Language (XML) format similar to the following:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <assembly xmlns="urn:schemas-microsoft-com:asm.v1"
manifestVersion="1.0">
 <assemblyIdentity
 version="1.0.0.0"
 processorArchitecture="X86"
 name="CompanyName.ProductName.YourApp"
 type="win32"
 />
 <description>Your application description here.</description>
 <dependency>
 <dependentAssembly>
 <assemblyIdentity
 type="win32"
 name="Microsoft.Windows.Common-Controls"
 version="6.0.0.0"
 processorArchitecture="X86"
 publicKeyToken="6595b64144ccf1df"
 language="*"
 />
 </dependentAssembly>
 </dependency>
 </assembly>

After you place the application manifest file in the same folder as the executable file, you can run the compiled
executable file to display the Windows XP visual style in the application.

Note: You cannot view visual styles when you run the compiled executable from the Visual Basic 6.0
Integrated Development Environment (IDE).

Although you can enable a Windows XP theme or visual style in Visual Basic 6.0 by calling
InitCommonControls and by using an application manifest file, Microsoft does not officially support this
feature.

If you enable a Windows XP theme in Visual Basic 6.0, you may encounter unexpected behavior. For
example, if you place option buttons on top of a Frame control and then enable a Windows XP theme or
visual style, the option buttons on the Frame control appear as black blocks when you run the executable file.

You can also embed the manifest into the executable file. In this case, you won't need the separate manifest
file.

The manifest file should be embedded into the executable using a resource editor. The manifest should be
embedded as a resource of type RT_RESOURCE and ID 1.

For details on this procedure, please refer to MSDN (Using Themes with Windows XP).

92 · VSFlexGrid Control

See Also

VSFlexGrid Control (page 73)

ArchiveInfo Property

Returns information from a VSFlex archive file.

Syntax

[form!]vsFlexGrid.ArchiveInfo(ArcFileName As String, InfoType As ArchiveInfoSettings, [Index As Variant])

Remarks

This property returns information from an archive file created with the Archive method.

The parameters for the ArchiveInfo property are described below:

ArcFileName as String

This parameter contains the name of the archive file, including its path.

InfoType As ArchiveInfoSettings

The type of information to retrieve from the archive. Valid settings are:

Constant Value Description

ArcFileCount 0 Returns the number of files in the archive.

arcFileName 1 Returns the name of a file in the archive.

arcFileSize 2 Returns the original size of a file in the archive.

arcFileCompressedSize 3 Returns the compressed size of a file in the
archive.

arcFileDate 4 The date of the last modification made to a file in
the archive.

Index As Integer (optional)

This parameter specifies which file in the archive should be processed. It ranges from zero to the number of
files in the archive minus 1. It may be omitted only when retrieving the file count.

For example, the code below lists the contents of an archive file.

Sub ArcList(fn$)
 Dim i&, cnt&
 With fg
 On Error Resume Next
 cnt = .ArchiveInfo(fn, arcFileCount)
 Debug.Print "Archive "; fn; " ("; cnt; " files)"
 Debug.Print "Name", "Size", "Compressed", "Date"
 For i = 0 To cnt - 1
 Debug.Print .ArchiveInfo(fn, arcFileName, i), _
 .ArchiveInfo(fn, arcFileSize, i), _
 .ArchiveInfo(fn, arcFileCompressedSize, i), _
 .ArchiveInfo(fn, arcFileDate, i)
 Next
 If Err <> 0 Then MsgBox "An error occurred while processing " & fn
 End With
 End Sub

AutoResize Property · 93

Data Type

Variant

See Also

VSFlexGrid Control (page 73)

AutoResize Property

Returns or sets whether column widths will be automatically adjusted when data is loaded.

Syntax

[form!]VSFlexGrid.AutoResize[= {True | False}]

Remarks

If the AutoResize property is set to True, the control automatically resizes its columns to fit the widest entry
every time new data is read from the database. This occurs by default when the control is loaded and every
time the data source is refreshed.

This property only works when the control is bound to a database. If the control is not bound to a database,
you may use the AutoSize method to adjust column widths after changes are made to the grid contents.

Data Type

Boolean

Default Value

True

See Also

VSFlexGrid Control (page 73)

AutoSearch Property

Returns or sets whether the control will search for entries as they are typed.

Syntax

[form!]VSFlexGrid.AutoSearch[= AutoSearchSettings]

Remarks

The settings for the AutoSearch property are described below:

Constant Value Description

FlexSearchNone 0 No auto search.

FlexSearchFromTop 1 When the user types, start searching from The
first row.

FlexSearchFromCursor 2 When the user types, start searching from The
current row.

If AutoSearch is on, the control will search the current column as the user types, automatically moving the
cursor and highlighting partial matches. The search is case-insensitive. The search is canceled when the user
presses the ESCAPE key or moves the selection with the mouse or cursor keys.

94 · VSFlexGrid Control

When the user stops typing for about two seconds, the search buffer is reset. This amount of time can be
changed by setting the AutoSearchDelay property.

If AutoSearch is on and the Editable property is set to True, the user will need to hit ENTER, SPACE, or F2
to start editing cells. Other keys are used for searching.

This property only affects the behavior of the grid itself. To automatically select options as the user types into a
combo list or list box, use the ComboSearch property.

Data Type

AutoSearchSettings (Enumeration)

Default Value

flexSearchNone (0)

See Also

VSFlexGrid Control (page 73)

AutoSearchDelay Property

Returns or sets the delay, in seconds, before the AutoSearch buffer is reset.

Syntax

[form!]VSFlexGrid.AutoSearchDelay[= value As Single]

Remarks

This property is only used when the AutoSearch property is set to a non-zero value.

Data Type

Single

Default Value

2

See Also

VSFlexGrid Control (page 73)

AutoSizeMode Property

Returns or sets whether AutoSize will adjust column widths or row heights to fit cell contents.

Syntax

[form!]VSFlexGrid.AutoSizeMode[= AutoSizeSettings]

Remarks

Valid settings for the AutoSizeMode property are:

Constant Value Description

flexAutoSizeColWidth 0 Adjust column widths to accommodate the
widest entry in each column.

flexAutoSizeRowHeight 1 Adjust row heights to accommodate the longest
entry in each row.

AutoSizeMouse Property · 95

The flexAutoSizeRowHeight setting is useful when text is allowed to wrap within cells (see the WordWrap
property) or when cells have fonts of different sizes (see the Cell property).

Data Type

AutoSizeSettings (Enumeration)

Default Value

flexAutoSizeColWidth (0)

See Also

VSFlexGrid Control (page 73)

AutoSizeMouse Property

Returns or sets whether columns should be resized to fit when the user double-clicks on the header row.

Syntax

[form!]VSFlexGrid.AutoSizeMouse[= {True | False}]

Remarks

If AllowUserResizing is set to a value that allows columns resizing, the mouse cursor changes as the user
moves the mouse near the edge of fixed header cells to indicate resizing is possible. If AutoSizeMouse is set to
True and the user double-clicks while the resize mouse cursor is displayed, the column will be resized
automatically to fit the widest entry on the column.

Data Type

Boolean

Default Value

True

See Also

VSFlexGrid Control (page 73)

BackColor Property

Returns or sets the background color of the non-fixed cells.

Syntax

[form!]VSFlexGrid.BackColor[= colorref&]

Remarks

The VSFlexGrid control has several properties that allow you to customize its colors.

96 · VSFlexGrid Control

The picture below shows these properties and to which part of the control each one refers:

To set the background color of individual cells or ranges, use the Cell (flexcpBackColor) property. To set the
background color of the current selection, use the CellBackColor property.

Data Type

Color

See Also

VSFlexGrid Control (page 73)

BackColorAlternate Property

Returns or sets the background color for alternate rows (set to 0 to disable).

Syntax

[form!]VSFlexGrid.BackColorAlternate[= colorref&]

Remarks

If you set the BackColorAlternate property to a non-zero value, the color specified is used to paint every other
row in the control, creating a checkbook look.

Using this property is faster and more efficient than using the CellBackColor property to paint every other
row. Besides, the alternating colors are preserved even if you sort the grid or add and remove rows.

Data Type

Color

Default Value

0 (Disabled)

See Also

VSFlexGrid Control (page 73)

BackColorBkg Property

Returns or sets the background color of the area not covered by any cells.

Syntax

[form!]VSFlexGrid.BackColorBkg[= colorref&]

BackColorFixed Property · 97

Remarks

See the BackColor property for a diagram that shows which colors are used to paint which areas of the grid.

Data Type

Color

See Also

VSFlexGrid Control (page 73)

BackColorFixed Property

Returns or sets the background color of the fixed rows and columns.

Syntax

[form!]VSFlexGrid.BackColorFixed[= colorref&]

Remarks

See the BackColor property for a diagram that shows which colors are used to paint which areas of the grid.

Data Type

Color

See Also

VSFlexGrid Control (page 73)

BackColorFrozen Property

Returns or sets the background color of the frozen rows and columns.

Syntax

[form!]VSFlexGrid.BackColorFrozen[= colorref&]

Remarks

If you set this property to zero, the frozen areas of the grid are painted using the color specified by the
BackColor property. In this case, the boundary between frozen and scrollable cells is still visible as a solid line
painted in the color specified by the SheetBorder property.

See the BackColor property for a diagram that shows which colors are used to paint which areas of the grid.

Data Type

Color

Default Value

0 (Disabled)

See Also

VSFlexGrid Control (page 73)

BackColorSel Property

Returns or sets the background color of the selected cells.

98 · VSFlexGrid Control

Syntax

[form!]VSFlexGrid.BackColorSel[= colorref&]

Remarks

See the BackColor property for a diagram that shows which colors are used to paint which areas of the grid.

Data Type

Color

See Also

VSFlexGrid Control (page 73)

BottomRow Property

Returns the zero-based index of the last row displayed in the control.

Syntax

val& = [form!]VSFlexGrid.BottomRow

Remarks

The bottom row returned may be only partially visible.

You cannot set this property. To scroll the contents of the control through code, set the TopRow and LeftCol
properties instead. To ensure that a given cell is visible, use the ShowCell method.

The following line prints the number of the bottom most row currently visible:

 Debug.Print fg.BottomRow

Data Type

Long

See Also

VSFlexGrid Control (page 73)

Cell Property

Returns or sets cell properties for an arbitrary range.

Syntax

[form!]vsFlexGrid.Cell(Setting As CellPropertySettings, [R1 As Long], [C1 As Long], [R2 As Long], [C2 As
Long]) [= Value]

Remarks

The Cell property allows you to read or set cell properties directly to individual cells or ranges (without
selecting them).

The parameters for the Cell property are described below:

Setting As CellPropertySettings

This parameter determines which property will be read or set. The settings available are listed below.

Row1, Col1, Row2, and Col2 As Long (optional)

Cell Property · 99

When reading cell properties, only cell (Row1, Col1) is used. When setting, the whole range is affected. The
only exception is when you read the flexcpText property of a range. In this case, a clip string is returned
containing the text in the whole selection. The default value for Row1 and Col1 is the current row and the
current column (Row and Col properties). Thus, if they are not supplied, the current cell is used. The default
value for Row2 and Col2 is Row1 and Col1. Thus, if they are not supplied, a single cell is used.

Valid settings for the Setting parameter are:

Constant Value Description

FlexcpText 0 Returns or sets the cell's text (or clip string for
selections).

FlexcpTextStyle 1 Returns or sets the cell's text style (see the
CellTextStyle property).

FlexcpAlignment 2 Returns or sets the cell's text alignment (see the
CellAlignment property).

FlexcpPicture 3 Returns or sets the cell's picture (see the
CellPicture property).

FlexcpPictureAlignment 4 Returns or sets the cell's picture alignment (see
the CellPictureAlignment property).

FlexcpChecked 5 Returns or sets the state of the cell's check box
(see the CellChecked property).

FlexcpBackColor 6 Returns or sets the cell's back color (see the
CellBackColor property).

FlexcpForeColor 7 Returns or sets the cell's fore color (see the
CellForeColor property).

flexcpFloodPercent 8 Returns or sets the cell's flood percent (see
CellFloodPercent property).

flexcpFloodColor 9 Returns or sets the cell's flood color (see the
CellFloodColor property).

flexcpFont 10 Returns or sets the cell's font.

flexcpFont* 11-17 Returns or sets properties of the cell's font (see
the CellFontName property etc.).

flexcpValue 18 Returns the value of the cell's text (read-only).

flexcpTextDisplay 19 Returns the cell's formatted text (read only).

flexcpData 20 Returns or sets a Variant attached to the cell.

flexcpCustomFormat 21 Returns True if the cell has custom formatting
(set to False to remove all custom formatting).

FlexcpLeft 22 Returns a cell's left coordinate, in twips, taking
merging into account (read-only).

FlexcpTop 23 Returns a cell's top coordinate, in twips, taking
merging into account (read-only).

FlexcpWidth 24 Returns a cell's width, in twips, taking merging
into account (read-only).

FlexcpHeight 25 Returns a cell's height, in twips, taking merging
into account (read-only).

100 · VSFlexGrid Control

Constant Value Description

flexcpVariantValue 26 Returns a double if the cell contains a numeric
value or a string otherwise (read-only).

flexcpRefresh 27 Set to True to force a cell or range to be
repainted.

FlexcpSort 28 Allows you to sort a range without changing the
selection.

Most of the settings listed above can also be read or set through other properties (e.g. Text, TextArray, etc.).
Using the Cell property is often more convenient, however, because you it lets you specify the cell range.

A couple of settings are not accessible through other properties and deserve additional comments:

flexcpTextDisplay

This setting allows you to get the formatted contents of the cell, as it is displayed to the user. For example, if a
cell contains the string "1234" and the ColFormat property is set to "#,###.00", this setting will return
"1,234.00".

flexcpData

This settings allows you to attach custom information to individual cells, the same way the RowData and
ColData properties allow you to attach custom information to rows and columns. These values are Variants,
which means you may associate virtually any type of data with a cell, including strings, longs, objects, arrays,
etc.

flexcpFont

This setting allows you to assign fonts to cells in one step. This is much more efficient than setting each font
property individually. For example, instead of writing:

 fg.CellFontName = "Arial"
 fg.CellFontSize = 8
 fg.CellFontBold = True

you may write

 fg.Cell(flexcpFont) = Text1.Font

flexcpCustomFormat
This setting returns a Boolean value that indicates whether a cell has any custom formatting associated with it
(e.g. back color, font, data, etc). You may also set this to False to clear any custom formatting a cell may have.

For example:

 ' set the font to bold on cell (1,1)
 fg.Cell(flexcpFontBold, 1, 1) = True
 ' set the font to bold on cells (1,1)-(10,1)
 fg.Cell(flexcpFontBold, 1, 1, 10) = True

Data Type

Variant

See Also

VSFlexGrid Control (page 73)

CellAlignment Property · 101

CellAlignment Property

Returns or sets the alignment of text in the selected cell or range.

Syntax

[form!]VSFlexGrid.CellAlignment[= AlignmentSettings]

Remarks

Valid settings for the CellAlignment property are:

Constant Value

FlexAlignLeftTop 0

FlexAlignLeftCenter 1

FlexAlignLeftBottom 2

FlexAlignCenterTop 3

FlexAlignCenterCenter 4

FlexAlignCenterBottom 5

FlexAlignRightTop 6

FlexAlignRightCenter 7

FlexAlignRightBottom 8

FlexAlignGeneral 9

Changing this property affects the current cell or the current selection, depending on the setting of the FillStyle
property. To set the alignment of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

This sample selects the first seven cells in column 3 and centers the text.

 With fg
 'select rows 1 through 7 in Column 3
 .Select 1, 3, 7, 3
 .FillStyle = flexFillRepeat
 .CellAlignment = flexAlignCenterCenter
 'return .FillStyle to its default (if needed)
 .FillStyle = flexFillSingle
 End With

Data Type

AlignmentSettings (Enumeration)

See Also

VSFlexGrid Control (page 73)

CellBackColor Property

Returns or sets the background color of the selected cell or range.

Syntax

[form!]VSFlexGrid.CellBackColor[= colorref&]

102 · VSFlexGrid Control

Remarks

Setting this property to zero (black) causes the control to paint the cell using the standard colors (set by the
BackColor and BackColorAlternate properties). Therefore, to set this property to black, use RGB(1,1,1)
instead of RGB(0,0,0).

The following code only changes the back color of the current cell:

 FG.CellBackColor = vbRed

Changing this property affects the current cell or the current selection, depending on the setting of the FillStyle
property. To set the back color of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

For Example, the following code selects the first seven cells in column 3 and sets the BackColor for those cells:

 With fg
 .Select 1, 3, 7, 3
 .FillStyle = flexFillRepeat
 .CellBackColor = &HFF 'Red
 'return .FillStyle to its default (if needed)
 .FillStyle = flexFillSingle
 'Make cell 1, 1 the current cell so we can view the change
 .Select 1, 1
 End With

Data Type

Color

See Also

VSFlexGrid Control (page 73)

CellButtonPicture Property

Returns or sets the picture used in cell buttons.

Syntax

[form!]VSFlexGrid.CellButtonPicture[= Picture]

Remarks

This property allows you to customize the appearance of cell buttons. For details on how to create and handle
cell buttons, see the CellButtonClick event.

If you want to use a single picture for all cell buttons on the grid, assign the picture to the CellButtonPicture
property at design time, or at the Form_Load event. To change pictures depending on the row, column, or cell
being edited, trap the BeforeEdit event and set the picture accordingly. For example, the code below uses
different pictures depending on the column being edited:

 Private Sub fg_BeforeEdit(ByVal Row As Long, ByVal Col As Long,
Cancel As Boolean)
 Select Case Col
 Case 2 ' ellipsis button
 fg.ComboList = "..."
 Set fg.CellButtonPicture = Nothing
 Case 3 ' font button
 fg.ComboList = "..."
 Set fg.CellButtonPicture = imgFont
 Case 4 ' color button
 fg.ComboList = "..."
 Set fg.CellButtonPicture = imgColor
 Case Else ' no button

CellChecked Property · 103

 fg.ComboList = ""
 Set fg.CellButtonPicture = Nothing
 End Select
 End Sub

The pictures used for cell buttons should fit within the button (larger pictures are truncated). They should also
be transparent, so the button face can be seen through the empty parts of the picture. For best results, use small
icons (16 x 16 pixels) and draw the picture in the upper left 12 x 12 rectangle within the icon.

Data Type

Picture

See Also

VSFlexGrid Control (page 73)

CellChecked Property

Returns or sets whether a grid cell has a check mark in it.

Syntax

[form!]VSFlexGrid.CellChecked[= CellCheckedSettings]

Remarks

Valid settings for the CellChecked property are:

Constant Value Description

FlexNoCheckbox 0 The cell has no check box. This is the default setting.

FlexChecked 1 The cell has a check box that is checked.

FlexUnchecked 2 The cell has a check box that is not checked.

FlexTSChecked 3 Tri-state Checked (when clicked, changes state to
FlexTSGrayed)

FlexTSGrayed 4 Tri-state Grayed (when clicked, changes state to
FlexTSUnchecked)

FlexTSUnchecked 5 Tri-state Unchecked (when clicked, changes state to
FlexTSChecked)

If the cell has a check box and the Editable property is set to True, the user can toggle the check boxes by
clicking them with the mouse or by hitting the SPACE or RETURN keys on the keyboard. Either way, the
AfterEdit event is fired after the toggle so you can take appropriate action.

The FlexTSChecked and FlexTSUnchecked settings cause the grid to display checked and unchecked boxes
that are identical to the FlexChecked and FlexUnchecked. The difference is that the former are tri-state
settings. They cause the check box to cycle through checked, grayed, and unchecked states instead of simply
toggling between checked and unchecked.

The check box may appear on the left, right, or center of the cell, depending on the setting of the
CellPictureAlignment property.

Changing this property affects the current cell or the current selection, depending on the setting of the FillStyle
property. To set check box values of an arbitrary range of cells (not necessarily the current selection), use the
Cell property instead.

104 · VSFlexGrid Control

For example, the code below makes column 1

 Private Sub Form_Load()
 Dim r&
 For r = fg.FixedRows To fg.Rows – 1
 fg.Cell(flexcpChecked, r, 1) = flexUnchecked
 fg.Cell(flexcpText, r, 1) = "Row " & r
 Next
 fg.Editable = flexEDKbdMouse
 End Sub

 Private Sub Command1_Click()
 Dim r&
 For r = fg.FixedRows To fg.Rows - 1
 If fg.Cell(flexcpChecked, r, 1) = flexChecked Then
 Debug.Print fg.TextMatrix(r, 1); " is Checked"
 End If
 Next
 End Sub

Data Type

CellCheckedSettings (Enumeration)

See Also

VSFlexGrid Control (page 73)

CellFloodColor Property

Returns or sets the color to be used for flooding a cell.

Syntax

[form!]VSFlexGrid.CellFloodColor[= colorref&]

Remarks

This property overrides the FloodColor property to determine the color to be used for flooding individual
cells. For performance reasons, these colors are always mapped to the nearest solid color.

Setting this property to zero (black) causes the control to paint the cell using the standard colors (set by the
FloodColor property). Thus, to set this property to black, use RGB(1,1,1) instead of RGB(0,0,0) or vbBlack.

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the flood color of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

The Cell Flooding Demo shows how this property is used.

Data Type

Color

See Also

VSFlexGrid Control (page 73)

CellFloodPercent Property

Returns or sets the percentage of flooding for a cell.

Syntax

[form!]VSFlexGrid.CellFloodPercent[= value As Integer]

CellFontBold Property · 105

Remarks

This property allows you to fill up a portion of a cell so it can be used as a progress indicator or a bar in a bar
chart.

Setting this property to a value between -100 and 100 causes the cell to be filled with the color specified by the
FloodColor property or CellFloodColor property.

For example, the following code makes it so the FloodColor will start from the right and fill 25% of the cell.

 FG.CellFloodPercent = -25

Positive values fill the cell from left to right. Negative values fill it from right to left.

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the flood color of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

The Cell Flooding Demo shows how this property is used.

Data Type

Integer

See Also

VSFlexGrid Control (page 73)

CellFontBold Property

Returns or sets the Bold attribute of the font of the selected cell or range.

Syntax

[form!]VSFlexGrid.CellFontBold[= {True | False}]

Remarks

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

CellFontItalic Property

Returns or sets the Italic attribute of the font of the selected cell or range.

Syntax

[form!]VSFlexGrid.CellFontItalic[= {True | False}]

Remarks

Changing this property affects the current cell or the current selection, depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

106 · VSFlexGrid Control

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

CellFontName Property

Returns or sets the name of the font of the selected cell or range.

Syntax

[form!]VSFlexGrid.CellFontName[= value As String]

Remarks

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

Setting this property to an empty string resets the cell formatting and causes the default font to be used.

Data Type

String

See Also

VSFlexGrid Control (page 73)

CellFontSize Property

Returns or sets the size of the font of the selected cell or range.

Syntax

[form!]VSFlexGrid.CellFontSize[= value As Single]

Remarks

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

Setting this property to zero resets the cell formatting and causes the default font to be used.

Data Type

Single

See Also

VSFlexGrid Control (page 73)

CellFontStrikethru Property

Returns or sets the Strikethru attribute of the font of the selected cell or range.

Syntax

[form!]VSFlexGrid.CellFontStrikethru[= {True | False}]

CellFontUnderline Property · 107

Remarks

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

CellFontUnderline Property

Returns or sets the Underline attribute of the font of the selected cell or range.

Syntax

[form!]VSFlexGrid.CellFontUnderline[= {True | False}]

Remarks

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

CellFontWidth Property

Returns or sets the width of the font of the selected cell or range.

Syntax

[form!]VSFlexGrid.CellFontWidth[= value As Single]

Remarks

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

Setting this property to zero causes the default font width to be used.

Data Type

Single

See Also

VSFlexGrid Control (page 73)

CellForeColor Property

Returns or sets the foreground color of the selected cell or range.

108 · VSFlexGrid Control

Syntax

[form!]VSFlexGrid.CellForeColor[= colorref&]

Remarks

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the font of an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

Setting this property to zero (black) causes the control to paint the cell using the standard color (set by the
ForeColor property). Thus, to set this property to black, use RGB(1,1,1) instead of RGB(0,0,0) or vbBlack.

Data Type

Color

See Also

VSFlexGrid Control (page 73)

CellHeight Property

Returns the height of the selected cell, in twips. Also brings the cell into view, scrolling if necessary.

Syntax

val& = [form!]VSFlexGrid.CellHeight

Remarks

The CellHeight, CellWidth, CellTop, and CellLeft property are useful for placing other controls over or near
a specific cell. Whenever you read any of these properties, the control assumes that you want to work on the
current cell and it automatically brings it into view, scrolling if necessary.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

CellLeft Property

Returns the left (x) coordinate of the selected cell relative to the control, in twips. Also brings the cell into
view, scrolling if necessary.

Syntax

val& = [form!]VSFlexGrid.CellLeft

Remarks

The CellHeight, CellWidth, CellTop, and CellLeft property are useful for placing other controls over or near
a specific cell. Whenever you read any of these properties, the control assumes that you want to work on the
current cell and it automatically brings it into view, scrolling if necessary.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

CellPicture Property · 109

CellPicture Property

Returns or sets the picture displayed in a selected cell or range.

Syntax

[form!]VSFlexGrid.CellPicture[= Picture]

Remarks

The Picture object assigned to this property may be retrieved from another control (e.g. the Image control's
Picture property) or loaded from a disk file using Visual Basic's LoadPicture function. Using pictures in Visual
C++ is a little more involved. For details on this, see the Using VSFlexGrid in Visual C++ topic.

Each cell may contain text and a picture. The relative position of the text and picture is determined by the
CellAlignment property and CellPictureAlignment property. If you want the text to be drawn over the
picture, set the PicturesOver property to True.

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To assign pictures to an arbitrary range of cells (not necessarily the current selection), use the Cell
property instead.

Data Type

Picture

See Also

VSFlexGrid Control (page 73)

CellPictureAlignment Property

Returns or sets the alignment of the pictures in the selected cell or range.

Syntax

[form!]VSFlexGrid.CellPictureAlignment[= PictureAlignmentSettings]

Remarks

Valid settings for the CellPictureAlignment property are:

Constant Value

flexPicAlignLeftTop 0

flexPicAlignLeftCenter 1

flexPicAlignLeftBottom 2

flexPicAlignCenterTop 3

flexPicAlignCenterCenter 4

flexPicAlignCenterBottom 5

flexPicAlignRightTop 6

flexPicAlignRightCenter 7

flexPicAlignRightBottom 8

flexPicAlignStretch 9

flexPicAlignTile 10

110 · VSFlexGrid Control

This property also governs the alignment of check boxes in the cells (see the CellChecked property).

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the picture alignment of an arbitrary range of cells (not necessarily the current selection), use
the Cell property instead.

Data Type

PictureAlignmentSettings (Enumeration)

See Also

VSFlexGrid Control (page 73)

CellTextStyle Property

Returns or sets 3D effects for text in a selected cell or range.

Syntax

[form!]VSFlexGrid.CellTextStyle[= TextStyleSettings]

Remarks

The effect of the settings for the CellTextStyle property are described below:

Constant Value Description

flexTextFlat 0 Draw text normally.

flexTextRaised 1 Draw text with a strong raised 3-D effect.

flexTextInset 2 Draw text with a strong inset 3-D effect.

flexTextRaisedLight 3 Draw text with a light raised 3-D effect.

flexTextInsetLight 4 Draw text with a light inset 3-D effect.

Constants flexTextRaised and flexTextInset work best for large and bold fonts. Constants flexTextRaisedLight and
flexTextInsetLight work best for small regular fonts.

Changing this property affects the current cell or the current selection depending on the setting of the FillStyle
property. To set the picture alignment of an arbitrary range of cells (not necessarily the current selection), use
the Cell property instead.

Data Type

TextStyleSettings (Enumeration)

See Also

VSFlexGrid Control (page 73)

CellTop Property

Returns the top (y) coordinate of the selected cell relative to the control, in twips. Also brings the cell into
view, scrolling if necessary.

Syntax

val& = [form!]VSFlexGrid.CellTop

CellWidth Property · 111

Remarks

The CellHeight, CellWidth, CellTop, and CellLeft property are useful for placing other controls over or near
a specific cell. Whenever you read any of these properties, the control assumes that you want to work on the
current cell and it automatically brings it into view, scrolling if necessary.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

CellWidth Property

Returns the width of the selected cell, in twips. Also brings the cell into view, scrolling if necessary.

Syntax

val& = [form!]VSFlexGrid.CellWidth

Remarks

The CellHeight, CellWidth, CellTop, and CellLeft property are useful for placing other controls over or near
a specific cell. Whenever you read any of these properties, the control assumes that you want to work on the
current cell and it automatically brings it into view, scrolling if necessary.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

ClientHeight Property

Returns the height of the control's client area, in twips.

Syntax

val& = [form!]VSFlexGrid.ClientHeight

Remarks

The ClientHeight and ClientWidth property are useful for setting column widths and row heights
proportionally to the size of the control.

These properties return values that are slightly smaller than the control's Width and Height properties, because
they discount the space taken up by the scrollbars and the control's borders.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

ClientWidth Property

Returns the width of the control's client area, in twips.

112 · VSFlexGrid Control

Syntax

val& = [form!]VSFlexGrid.ClientWidth

Remarks

The ClientHeight and ClientWidth properties are useful for setting column widths and row heights
proportionally to the size of the control.

These properties return values that are slightly smaller than the control's Width and Height properties, because
they discount the space taken up by the scrollbars and the control's borders.

For example, the code below scales the columns widths proportionally whenever the grid is resized:

 Private Sub Form_Load()
 fg.Cols = 3
 fg.ExtendLastCol = True
 fg.ScrollBars = flexScrollBarVertical
 End Sub

 Private Sub Form_Resize()
 fg.Move 0, 0, ScaleWidth, ScaleHeight
 fg.ColWidth(0) = fg.ClientWidth * 0.2
 fg.ColWidth(1) = fg.ClientWidth * 0.4
 fg.ColWidth(2) = fg.ClientWidth * 0.4
 End Sub

Note that the code sets the ExtendLastCol property to True to eliminate any round-off errors.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

Clip Property

Returns or sets the contents of a range.

Syntax

[form!]VSFlexGrid.Clip[= value As String]

Remarks

The string assigned to the Clip property may contain the contents of multiple rows and columns. Tab
characters (vbTab or Chr(9)) indicate column breaks, and carriage return characters (vbCr or Chr(13)) indicate
row breaks.

The default row and column delimiters may be changed using the ClipSeparators property.

When a string is assigned to the Clip property, only the selected cells are affected. If there are more cells in the
selected region than are described in the clip string, the remaining cells are ignored. If there are more cells
described in the clip string than in the selected region, the extraneous portion of the clip string is ignored.
Empty entries in the Clip string will clear existing cell contents.

The example below puts text into a selected area two rows high and two columns wide:

 ' build clip string
 Dim s$
 s = "1st" & vbTab & "a" & vbCr & "2nd" & vbTab & "b"
 ' paste it over current selection
 fg.Clip = s

ClipSeparators Property · 113

You may also retrieve or set a clip string for an arbitrary selection by reading the Cell property. For example,
the code below copies contents of the first row to the current row:

Private Sub Command1_Click()
 Dim s$
 s = fg.Cell(flexcpText, 1, 0, 1, fg.Cols - 1)
 fg.Cell(flexcpText, fg.Row, 0, fg.Row, fg.Cols - 1) = s
End Sub

Data Type

String

See Also

VSFlexGrid Control (page 73)

ClipSeparators Property

Returns or sets the characters to be used as column and row separators in Clip strings.

Syntax

[form!]VSFlexGrid.ClipSeparators[= value As String]

Remarks

By default, Clip strings are built using tab characters (vbTab or Chr(9)) indicate column breaks, and carriage
return characters (vbCr or Chr(13)) indicate row breaks. You may change these characters by assigning a new
string to the ClipSeparators property.

The string assigned to the ClipSeparators may be empty, in which case the defaults are used. If it is not empty,
it should consist of two distinct characters. The first character will be used as a column separator and the
second as a row separator.

The ClipSeparators are used in the following contexts:

1. With the Clip property.

2. With the AddItem method.

3. With the Cell property with the flexcpText setting.

4. With the SaveGrid and LoadGrid methods with the FlexFileCustomText setting.

For example, the code below saves the contents of the grid to a text file using pipe character ("|") as column
separators. Notice how the code saves and restores the ClipSeparators property to avoid any interference with
other parts of the application.

 Private Sub Command1_Click()
 Dim cs$
 cs = fg.ClipSeparators
 fg.ClipSeparators = "|" & vbCr
 fg.SaveGrid "c:\pipes.txt", flexFileCustomText
 fg.ClipSeparators = cs
 End Sub

Data Type

String

See Also

VSFlexGrid Control (page 73)

114 · VSFlexGrid Control

Col Property

Returns or sets the zero-based index of the current column.

Syntax

[form!]VSFlexGrid.Col[= value As Long]

Remarks

Use the Row and Col properties to make a cell current or to find out which row or column contains the
current cell. Columns and rows are numbered from zero, beginning at the top for rows and at the left for
columns.

The Col property may be set to -1 to hide the selection, to a value between zero and FixedCols - 1 to select a
cell in a fixed column, or to a value between FixedCols and Cols - 1 to select a cell in a scrollable column.
Setting Col to other values will trigger an Invalid Index error.

Setting the Row and Col properties automatically resets RowSel and ColSel, so the selection becomes the
current cell. Therefore, to specify a block selection, you must set Row and Col first, then set RowSel and
ColSel. Alternatively, you may use the Select method to do it all with a single statement.

Setting the Row and Col properties does not ensure that the current cell is visible. To do that, use the
ShowCell method.

Note that the Row and Col properties are not the same as the Rows and Cols properties.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

ColAlignment Property

Returns or sets the alignment of the given column.

Syntax

[form!]VSFlexGrid.ColAlignment(Col As Long)[= AlignmentSettings]

Remarks

Valid settings for the ColAlignment property are:

Constant Value

FlexAlignLeftTop 0

FlexAlignLeftCenter 1

FlexAlignLeftBottom 2

FlexAlignCenterTop 3

FlexAlignCenterCenter 4

FlexAlignCenterBottom 5

FlexAlignRightTop 6

FlexAlignRightCenter 7

ColComboList Property · 115

Constant Value

FlexAlignRightBottom 8

FlexAlignGeneral 9

The flexAlignGeneral setting aligns text to the left and numbers and dates to the right.

The ColAlignment property affects all cells in the specified column, including those in fixed rows. You may
override this setting for fixed cells using the FixedAlignment property. You may override it for individual cells
using the Cell(flexcpAlignment) property.

This example sets the alignment of the third column to the right and bottom

 fg.ColAlignment(2) = flexAlignRightBottom

You may set the alignment of pictures in cells using the CellPictureAlignment or Cell(flexcpPictureAlignment)
properties.

When setting this property, the Col parameter should be set to a value between zero and Cols - 1 to set the
alignment of a given column, or to -1 to set the alignment of all columns.

Data Type

AlignmentSettings (Enumeration)

See Also

VSFlexGrid Control (page 73)

ColComboList Property

Returns or sets the list to be used as a drop-down on the specified column.

Syntax

[form!]VSFlexGrid.ColComboList(Col As Long)[= value As String]

Remarks

This property is similar to the ComboList property, except it applies to entire columns. This is often more
convenient that using the ComboList property because you may set the ColComboList property once for each
column, whereas the ComboList property normally needs to be set in the BeforeEdit event.

Another difference is that the ColComboList property can be configured to acts as a data dictionary, allowing
you to map numeric values to string entries. The control will hold the numeric values, but will display the
associated strings. This mapping is useful for displaying numeric fields that correspond to entries on a list or on
a database table.

For example, you may have a column that holds the employee type, which could be one of the following:
"Full-time", "Part-time", "Contractor", "Intern", or "Other". These values will often come from a database,
where they will have a unique entry ID. These should be included in the ColComboList string using the
following syntax:

fg.ColComboList(1) = "#1;Full time|#23;Part
time|#65;Contractor|#78;Intern|#0;Other"

After editing, the column will contain the numbers for each entry (i.e. 1 for full-time, 23 for part-time, 65 for
contractor etc.). The control will display the full text, however. (This translation is optional. If you omit the
entry ID, the control will store the full text.)

116 · VSFlexGrid Control

You may retrieve the number using the Cell(flexcpText), Text, or TextMatrix properties. You may retrieve the
associated text using the Cell(flexcpTextDisplay) property. For example:

 Debug.Print fg.Cell(flexcpText, fg.Row, 1),
fg.Cell(flexcpTextDisplay, fg.Row, 1)
 23 Part time

You may use the BuildComboList method to create a ColComboList property automatically from a
recordset.

For more details on list syntax, including multi-column lists, see the ComboList property.

When setting this property, the Col parameter should be set to a value between zero and Cols - 1 to set the
ColComboList of a given column, or to -1 to set the ColComboList of all columns.

Note

The value -1 is reserved and may not be used as an entry ID.

Data Type

String

See Also

VSFlexGrid Control (page 73)

ColData Property

Returns or sets a user-defined variant associated with the given column.

Syntax

[form!]VSFlexGrid.ColData(Col As Long)[= value As Variant]

Remarks

The RowData and ColData properties allow you to associate values with each row or column on the control.
You may also associate values to individual cells using the Cell(flexcpData) property.

A typical use for these properties is to keep indices into an array of data structures associated with each row, or
pointers to objects represented by the data in the row or column. The values assigned will remain current even
if you sort the control or move its columns.

Because these properties hold Variants, you have extreme flexibility in the types of information you may
associate with each row, column or cell. The example below shows some ways in which you can use the
ColData property:

 Dim coll As New Collection
 coll.Add "Hello"
 coll.Add "World"
 fg.ColData(1) = 212 ' store a number
 fg.ColData(2) = "Hello" ' store a string
 fg.ColData(3) = coll ' store a pointer to an object
 fg.ColData(4) = Me ' store a pointer to a form
 Debug.Print TypeName(fg.ColData(1)), fg.ColData(1)
 Debug.Print TypeName(fg.ColData(2)), fg.ColData(2)
 Debug.Print TypeName(fg.ColData(3)), fg.ColData(3).Item(2)
 Debug.Print TypeName(fg.ColData(4)), fg.ColData(4).Caption

This code produces the following output:

Integer 212
String Hello
Collection World
Form1 Form1

ColDataType Property · 117

Data Type

Variant

See Also

VSFlexGrid Control (page 73)

ColDataType Property

Returns or sets the data type for the column.

Syntax

[form!]VSFlexGrid.ColDataType(Col As Long)[= DataTypeSettings]

Remarks

Valid settings for the ColDataType property are listed below:

Constant Value

FlexDTEmpty 0

FlexDTNull 1

FlexDTShort 2

FlexDTLong 3

FlexDTSingle 4

FlexDTDouble 5

FlexDTCurrency 6

FlexDTDate 7

FlexDTString 8

FlexDTDispatch 9

FlexDTError 10

FlexDTBoolean 11

FlexDTVariant 12

FlexDTUnknown 13

FlexDTDecimal 14

flexDTLong8 20

FlexDTStringC 30

FlexDTStringW 31

This property is automatically set for each column when the control is bound to a recordset, so you can
determine the data type of each field. When not in bound mode, you may set this property using code.

There are two column types that receive special treatment from the control:

FlexDTDate

This setting is taken into account when sorting dates either using the Sort property or when the user clicks the
ExplorerBar. If you don't set the column type to flexDTDate, the dates will be sorted as strings.

118 · VSFlexGrid Control

FlexDTBoolean

This setting causes the control to display check boxes instead of strings. The mapping between strings and
check boxes follows the rules for Variant conversion: any non-zero value and the "True" string are displayed as
checked boxes; zero values are displayed as unchecked boxes.

For example:

 fg.ColDataType(1) = flexDTBoolean
 fg.TextMatrix(1, 1) = 1 ' checked
 fg.TextMatrix(2, 1) = True ' checked
 fg.TextMatrix(3, 1) = "True" ' checked
 fg.TextMatrix(4, 1) = 0 ' not checked
 fg.TextMatrix(5, 1) = "False" ' not checked
 fg.TextMatrix(6, 1) = "foobar" ' not checked

If you want to display custom strings for boolean values instead of check boxes, set the ColFormat property to
a string containing the values you want to display for True and False values, separated by a semicolon. For
example:

 fg.ColDataType(2) = flexDTBoolean
 fg.ColFormat(2) = "Yes;Not Available" ' or "True;False", "On;Off",
"Yes;No", etc.

When setting this property, the Col parameter should be set to a value between zero and Cols - 1 to set the data
type of a given column, or to -1 to set the data type of all columns.

Data Type

DataTypeSettings (Enumeration)

See Also

VSFlexGrid Control (page 73)

ColEditMask Property

Returns or sets the input mask used to edit cells on the specified column.

Syntax

[form!]VSFlexGrid.ColEditMask(Col As Long)[= value As String]

Remarks

This property is similar to the EditMask property, except it applies to entire columns. This is often more
convenient than using the EditMask property because you may set the ColEditMask property once for each
column, whereas the EditMask property normally needs to be set in the BeforeEdit event.

For more details and syntax documentation, see the EditMask property.

Data Type

String

See Also

VSFlexGrid Control (page 73)

ColFormat Property

Returns or sets the format used to display numeric values.

ColFormat Property · 119

Syntax

[form!]VSFlexGrid.ColFormat(Col As Long)[= value As String]

Remarks

This property allows you to define a format to be used for displaying numerical, boolean, or date/time values.
The syntax for the format string is similar but not identical to the syntax used with Visual Basic's Format
command. The syntax is described below:

Formatting Numbers:

The characters used to format numerical values are as follows:

Char Description

$ A locale-dependent currency sign is propended to the output.

, Locale-dependent thousand separators are added to the output.

(Negative values are displayed enclosed in parentheses.

. The number of decimals is determined by the number of "0" or "#"
characters after the decimal point.

% The value is multiplied by 100 and followed by a percent sign.

,. The value is divided by 1000 and displayed with thousand separators.

The string "Currency" is also recognized by the control. It formats numbers using the system's currency
settings (specified with the Control Panel.)

Formatting Boolean Values:

If a column's ColDataType property is set to flexDTBoolean, the control will display checkboxes by default. If
you want to represent the boolean values in other ways (e.g. True/False, On/Off, Yes/No), then set the
ColFormat property to a string containing the values you want to display for True and False values, separated
by a semicolon. For example:

 fg.ColDataType(2) = flexDTBoolean
 fg.ColFormat(2) = "Yes;Not Available" ' or "True;False", "On;Off",
"Yes;No", etc.

Formatting Dates and Times:

The characters used to format date/time values is the same as the one used with Visual Basic's Format
command (including predefined strings such as "Short Date").

The ColFormat property does not modify the underlying data, only the way it is displayed. You may retrieve
the data using the Cell(flexcpText), Text, or TextMatrix properties. You may retrieve the display text using the
Cell(flexcpTextDisplay) property.

The example below shows several types of format and their effect:

 Private Sub Form_Load()

 ' format numbers
 fg.ColFormat(1) = "#,###.##" ' number with thousand separators
 fg.ColFormat(2) = "#.###%" ' percentage
 fg.ColFormat(3) = "#,.##" ' thousands
 fg.ColFormat(4) = "Currency" ' thousands

120 · VSFlexGrid Control

 ' format booleans
 fg.ColDataType(5) = flexDTBoolean
 fg.ColFormat(5) = "Probably;Hardly" ' Boolean

 ' format dates
 fg.ColFormat(6) = "ddd, mmmm d, yyyy"
 fg.ColFormat(7) = "Medium Date"
 fg.ColFormat(8) = "Medium Time"

 ' set some cells
 fg.TextMatrix(1, 1) = 1234.56
 fg.TextMatrix(1, 2) = 0.5432
 fg.TextMatrix(1, 3) = 125250
 fg.TextMatrix(1, 4) = -1234.5
 fg.TextMatrix(1, 5) = True
 fg.TextMatrix(1, 6) = #7/4/1969#
 fg.TextMatrix(1, 7) = #7/4/1969#
 fg.TextMatrix(1, 8) = #7/4/1969#
 ' display results:
 Dim i%
 Debug.Print "Format"; Tab(20); "Content"; Tab(40); "Display"
 Debug.Print "-----------"; Tab(20); "-----------"; Tab(40); "--
-----------"
 For i = 1 To 8
 Debug.Print fg.ColFormat(i); Tab(20); _
 fg.Cell(flexcpText, 1, i); Tab(40); _
 fg.Cell(flexcpTextDisplay, 1, i)
 Next
 End Sub

This code produces the following output:

Format Content Display
----------- ----------- -------------
#,###.## 1234.56 1,234.56
#.###% 0.5432 54.320%
#,.## 125250 125.25
Currency -1234.5 ($1,234.50)
Probably;Hardly True Probably
ddd, mmmm d, yyyy 04/07/1969 Fri, July 4, 1969
Medium Date 04/07/1969 04-Jul-69
Medium Time 04/07/1969 12:00 AM

When setting this property, the Col parameter should be set to a value between zero and Cols - 1 to set the
format for a given column, or to -1 to set the format for all columns.

Data Type

String

See Also

VSFlexGrid Control (page 73)

ColHidden Property

Returns or sets whether a column is hidden.

Syntax

[form!]VSFlexGrid.ColHidden(Col As Long)[= {True | False}]

ColImageList Property · 121

Remarks

Use the ColHidden property to hide and display columns. This is a better approach than setting the column's
ColWidth property to zero, because it allows you to display the column later with its original width.

Hidden columns are ignored by the AutoSize method.

When setting this property, the Col parameter should be set to a value between zero and Cols - 1 to hide or
show a given column, or to -1 to hide or show all columns.

This example hides the second column:

 fg.ColHidden(1) = True

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

ColImageList Property

Sets or returns a handle to an ImageList to be used as a source of pictures for a given column.

Syntax

[form!]VSFlexGrid.ColImageList(Col As Long)[= value As Long]

Remarks

This property is useful if you want to display numeric data contained in a grid column as pictures rather than
as numbers.

For example, the Products table in the NorthWind database contains a CategoryID entry. Instead of displaying
the categories as numbers or names, you could create an image list with icons representing each product
category, and then bind the CategoryID column to the image list. This is easier and more efficient than
traversing the recordset and setting the CellPicture property for each cell on the column, especially if the
number of records is very large.

The mapping between numeric values and image list indices is continuous, starting from zero. Pictures are
painted in cells that have numeric values between zero and the number of images on the list minus one. Cells
that are empty, contain non-numeric values, or contain values that are outside the image list range do not get
pictures.

When a cell picture comes from an image list, the text contents of the cell are not drawn, and the image is
aligned based on the setting of the ColAlignment property.

The code below shows how you can use the ColImageList property. It assumes you have a form with the
following controls on it:

Control Name Description

Fg A VSFlexGrid control (OLEDB version).

ImgList An Image List control with nine images, as shown below.

DataProducts An ADO data source control bound to the Products table from
the NorthWind database.

122 · VSFlexGrid Control

The imgList control should have nine images, corresponding to the product categories defined in the
NorthWind database. In fact, there are only eight product categories, but they are numbered from one to eight.
Thus an extra image with index zero had to be added to the list, even though it won't get used. Here's a picture
showing the images defined for the imgList control:

And here is the code that binds the grid and the image list:

 Private Sub Form_Load()
 Set fg.DataSource = dataProducts
 End Sub
 Private Sub fg_AfterDataRefresh()
 Dim c%
 c = fg.ColIndex("CategoryID")
 fg.ColImageList(c) = imgList.hImageList
 fg.ColAlignment(c) = flexAlignCenterCenter
 End Sub

The picture below shows the result:

ColIndent Property · 123

Data Type

Long

See Also

VSFlexGrid Control (page 73)

ColIndent Property

Returns or sets the indentation of the given column, in twips.

Syntax

[form!]VSFlexGrid.ColIndent(Col As Long)[= value As Long]

Data Type

Long

See Also

VSFlexGrid Control (page 73)

ColIndex Property

Returns the column index that matches the given key.

Syntax

val& = [form!]VSFlexGrid.ColIndex(Key As String)

Remarks

The ColIndex property is used in conjunction with the ColKey property to identify and refer to columns
regardless of their physical position on the grid. These properties are useful when the grid is bound to a
recordset or when the user is allowed to move columns around using the ExplorerBar.

To use these properties, assign unique keys to each column using the ColKey property. When you want to
refer to a specific column, convert the key into an index using the ColIndex property.

For example, the code below counts how many times the MouseMove event fired and displays the total on a
Counter column. The user may move the column to a different position with the mouse, and the code will
follow the column around:

 Private Sub fg_MouseMove(Button As Integer, Shift As Integer, X As
Single, Y As Single)
 Dim c%
 c = fg.ColIndex("Counter")
 fg.TextMatrix(1, c) = fg.ValueMatrix(1, c) + 1
 End Sub
 Private Sub Form_Load()
 fg.ExplorerBar = flexExMove
 fg.TextMatrix(0, 1) = "Counter"
 fg.ColKey(1) = "Counter"
 End Sub

When the grid is bound to a recordset, ColKey values are automatically set to the field names. This allows you
to refer to columns by their field names, as in the following code (which assumes the fg grid is bound to a
recordset with a field called CategoryID):

 fg.ColAlignment(fg.ColIndex("CategoryID")) = flexAlignCenterCenter

If the Key argument does not correspond to any ColKey value, the ColIndex property returns -1.

124 · VSFlexGrid Control

Data Type

Long

See Also

VSFlexGrid Control (page 73)

ColIsVisible Property

Returns whether a given column is currently within view.

Syntax

val% = [form!]VSFlexGrid.ColIsVisible(Col As Long)

Remarks

The ColIsVisible and RowIsVisible properties are used to determine whether the specified column or row is
within the visible area of the control or whether it has been scrolled off the visible part of the control.

This example checks to see if the second column is currently within view:

 If fg.ColIsVisible(1) Then
 Debug.Print "Column 1 is visible"
 End If

If a column has zero width or is hidden but is within the scrollable area, ColIsVisible returns True.

To ensure a given column is visible, use the ShowCell method.

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

ColKey Property

Returns or sets a key used to identify the given column.

Syntax

[form!]VSFlexGrid.ColKey(Col As Long)[= value As String]

Remarks

The ColKey property is used in conjunction with the ColIndex property to identify and refer to columns
regardless of their physical position on the grid. These properties are useful when the grid is bound to a
recordset or when the user is allowed to move columns around using the ExplorerBar.

To use these properties, assign unique keys to each column using the ColKey property. When you want to
refer to a specific column, convert the key into an index using the ColIndex property.

For details an example, see the ColIndex property.

Data Type

String

See Also

VSFlexGrid Control (page 73)

ColPos Property · 125

ColPos Property

Returns the left (x) coordinate of a column relative to the edge of the control, in twips.

Syntax

val& = [form!]VSFlexGrid.ColPos(Col As Long)

Remarks

This property is similar to the CellLeft property, except ColPos applies to an arbitrary column and will not
cause the control to scroll. The CellLeft property applies to the current selection and reading it will make the
current cell visible, scrolling the contents of the control if necessary.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

ColPosition Property

Moves a given column to a new position.

Syntax

[form!]vsFlexGrid.ColPosition(Col As Long)[= NewPosition As Long]

Remarks

The Col and NewPosition parameters must be valid column indices (in the range 0 to Cols - 1), or an error will
be generated.

When a column or row is moved with ColPosition or RowPosition, all formatting information moves with it,
including width, height, alignment, colors, fonts, etc. To move text only, use the Clip property instead.

For example, the following code shows how you can insert a new column at an arbitrary position on the grid:

 Sub InsertCol(pos%)
 fg.Cols = fg.Cols + 1
 fg.ColPosition(fg.Cols - 1) = pos
 fg.TextMatrix(0, pos) = "New " & fg.Cols
 End Sub

The ColPosition property gives you programmatic control over the column order. You may also use the
ExplorerBar property to allow users to move columns with the mouse.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

Cols Property

Returns or sets the total number of columns in the control.

Syntax

[form!]VSFlexGrid.Cols[= value As Long]

126 · VSFlexGrid Control

Remarks

Use the Rows and Cols properties to get the dimensions of the control or to resize the control dynamically at
run time.

The minimum number of rows and columns is 0. The maximum number is limited by the memory available
on your computer. If the control runs out of memory while trying to add rows, columns, or cell contents, it
will cause a run time error. To make sure your code works properly when dealing with large controls, you
should add error-handling code to your programs.

If you increase the value of the Cols property, new columns are appended to the right of the grid. To insert
columns at specific positions, you need to use the ColPosition property. If you decrease the value of the Cols
property, the rightmost columns are removed from the control.

This example sets the number of columns in the grid to four:

 fg.Cols = 4

Data Type

Long

See Also

VSFlexGrid Control (page 73)

ColSel Property

Returns or sets the extent of a range of columns.

Syntax

[form!]VSFlexGrid.ColSel[= value As Long]

Remarks

Use the RowSel and ColSel properties to modify a selection or to determine which cells are currently selected.
Columns and rows are numbered from zero, beginning at the top for rows and at the left for columns.

Setting the Row and Col properties automatically resets RowSel and ColSel, so the selection becomes the
current cell. Therefore, to specify a block selection, you must set Row and Col first, then set RowSel and
ColSel. Alternatively, you may use the Select method to do it all with a single statement.

If the SelectionMode property is set to flexSelectionListBox (3), you should use the IsSelected property to
select and deselect rows.

Note that when a range is selected, the value of Row may be greater than or less than RowSel, and Col may
be greater than or less than ColSel. This is inconvenient when you need to set up bounds for loops. In these
cases, use the GetSelection method to retrieve selection in an ordered fashion.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

ColSort Property

Returns or sets the sorting order for each column (for use with the Sort property).

ColWidth Property · 127

Syntax

[form!]VSFlexGrid.ColSort(Col As Long)[= SortSettings]

Remarks

This property allows you to specify different sorting orders for each column on the grid. The most common
settings for this property are flexSortGenericAscending and flexSortGenericDescending. For a complete list of
possible settings, see the Sort property.

To perform the sort using the settings assigned to each column, set the Sort property to flexSortUseColSort.

To sort dates, set the column's ColDataType property to flexDTDate.

For example, the following code sorts the grid so that the first row is in ascending order, the second is ignored,
and the third is in descending order:

 Private Sub Form_Load()
 fg.Cols = 4
 fg.ColSort(1) = flexSortGenericAscending
 fg.ColSort(2) = flexSortNone
 fg.ColSort(3) = flexSortGenericDescending
 End Sub
 Private Sub Command1_Click()
 fg.Select 1, 1, 1, 3
 fg.Sort = flexSortUseColSort
 End Sub

Data Type

SortSettings (Enumeration)

See Also

VSFlexGrid Control (page 73)

ColWidth Property

Returns or sets the width of the specified column in twips.

Syntax

[form!]VSFlexGrid.ColWidth(Col As Long)[= value As Long]

Remarks

Use this property to set the width of a column at runtime. To set column widths at design time, use the
FormatString property. To set width limits for all columns, use the ColWidthMin and ColWidthMax
properties. To set column widths automatically, based on the contents of the control, use the AutoSize
method.

If the Col parameter is -1, then the specified width is applied to all columns.

If set ColWidth to -1, the column width is reset to its default value, which depends on the size of the control's
current font. If set ColWidth to zero, the column becomes invisible. If you want to hide a column, however,
consider using the ColHidden property instead. This allows you to make the column visible again with the
same width it had before it was hidden.

This example sets the width of the third column to 1 inch (1440 twips)

 fg.ColWidth(2) = 1440

Data Type

Long

128 · VSFlexGrid Control

See Also

VSFlexGrid Control (page 73)

ColWidthMax Property

Returns or sets the maximum column width, in twips.

Syntax

[form!]VSFlexGrid.ColWidthMax[= value As Long]

Remarks

Set this property to a non-zero value to set a maximum limit to column widths. Set it to zero to remove the
maximum limit on column widths. Use the ColWidthMin property to set a minimum limit to column widths.

Setting limits on column widths may be useful in conjunction with the AutoSize method to prevent extremely
long entries from making columns too wide or empty columns from becoming too narrow.

This example sets the maximum column width to 2 inches (2880 twips):

 fg.ColWidthMax = 2880

Data Type

Long

See Also

VSFlexGrid Control (page 73)

ColWidthMin Property

Returns or sets the minimum column width, in twips.

Syntax

[form!]VSFlexGrid.ColWidthMin[= value As Long]

Remarks

Set this property to a non-zero value to set a minimum limit to column widths. Set it to zero to remove the
minimum limit on column widths. Use the ColWidthMax property to set a maximum limit to column widths.

Setting limits on column widths may be useful in conjunction with the AutoSize method to prevent extremely
long entries from making columns too wide or empty columns from becoming too narrow.

This example sets the minimum column width to 1/2 inch (720 twips):

 fg.ColWidthMin = 720

Data Type

Long

See Also

VSFlexGrid Control (page 73)

ComboCount Property

Returns the number of items in the editor's combo list.

ComboData Property · 129

Syntax

val& = [form!]VSFlexGrid.ComboCount

Remarks

The ComboCount property allows you to customize editing when using drop-down or combo lists. It is valid
only while the user is editing a value using a list.

For example, the code below traps the HOME key and selects a specific name instead of moving the cursor to
the first item on the list. The example also illustrates the use of other related properties, ComboItem and
ComboIndex.

Private Sub fg_KeyDownEdit(ByVal Row As Long, _
 ByVal Col As Long, _
 KeyCode As Integer, ByVal Shift As Integer)
 Dim i As Long
 If Col = 2 And KeyCode = vbKeyHome Then
 KeyCode = 0 ' eat the key
 For i = 0 To fg.ComboCount - 1 ' select "Cedric"
 If fg.ComboItem(i) = "Cedric" Then
 fg.ComboIndex = i
 Exit For
 End If
 Next
 End If
 End Sub

Data Type

Long

See Also

VSFlexGrid Control (page 73)

ComboData Property

Returns the long value associated with an item in the editor's combo list.

Syntax

val& = [form!]VSFlexGrid.ComboData([Index As Long])

Remarks

You may assign data values to list items when you define the list, using the ComboList or ColComboList
properties. Once the list is created, the data values cannot be changed and become read-only.

Assigning data values to list items serves two purposes:

1. If you do it using the ColComboList property, the control stores the data value instead of the string.
See the ColComboList property for details.

2. If you do it using the ComboList property, the control does not perform any mapping. In this case,
the value is available for use by the programmer, for example to store an index into an array or a
database record ID.

Note

The value -1 is reserved and may not be used as an entry ID.

Data Type

Long

130 · VSFlexGrid Control

See Also

VSFlexGrid Control (page 73)

ComboIndex Property

Returns or sets the zero-based index of the current selection in the editor's combo list.

Syntax

[form!]VSFlexGrid.ComboIndex[= value As Long]

Remarks

The ComboIndex property allows you to customize editing when using drop-down or combo lists. It is valid
only while the user is editing a value using a list.

See the ComboCount property for an example.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

ComboItem Property

Returns the string associated with an item in the editor's combo list.

Syntax

val$ = [form!]VSFlexGrid.ComboItem([Index As Long])

Remarks

The ComboItem property allows you to customize editing when using drop-down or combo lists. It is valid
only while the user is editing a value using a list.

See the ComboCount property for an example.

Data Type

String

See Also

VSFlexGrid Control (page 73)

ComboList Property

Returns or sets the list to be used as a drop-down when editing a cell.

Syntax

[form!]VSFlexGrid.ComboList[= value As String]

Remarks

The ComboList property controls the type of editor to be used when editing a cell. You may use a text box,
drop-down list, drop-down combo, or an edit button to pop up custom editor forms.

To use the ComboList property, set the Editable property to True, and respond to the BeforeEdit event by
setting the ComboList property to a string containing the proper options, described below.

ComboList Property · 131

Editing Options

To edit the cell using a regular text box, set the ComboList property to an empty string (""). You may also
define an edit mask using the EditMask property.

To edit the cell using a drop-down list, set the ComboList property to a string containing the available options,
separated by pipe characters ("|"). For example:

 ComboList = "ListItem 1|ListItem 2".

To edit the cell using a drop-down combo, set the ComboList property to a string containing the available
options, separated by pipe characters ("|") and starting with a pipe character. For example:

 ComboList = "|ComboItem 1|ComboItem 2".

You can also use edit masks with drop-down combos using the EditMask property.

To display an edit button, set the ComboList property to a string containing an ellipsis (...). Edit buttons look
like regular push buttons, aligned to the right of the cell, with an ellipsis as a caption. When the user clicks on
the edit button, the control fires the CellButtonClick event. For example:

 ComboList = "...".

List Syntax

In addition to the basic list syntax described above, you may create lists that define multi-column drop-downs
and translated lists (lists where each item has an associated numerical value).

To define multi-column lists, separate columns with tab characters (Chr(9), or vbTab). When you define a
multi-column combo, only one column is displayed in the cell (the others are visible only on the drop-down
list). By default, the first column is the one that is displayed in the cell. To display a different column instead,
add a string with the format "*nnn;" to the first item, where nnn is the zero-based index of the column to be
displayed.

To create a translated list, attach a numerical value to each list item by adding a string with format "#xxx;" to
the beginning of the row, where xxx is the numerical value. This value may be read while editing the cell using
the ComboData property.

For example:

 s = "|#10*1;Getz" & vbTab & "Stan" & vbTab & "1 Sansome" & vbTab &
"972-4323" & _
 "|#20;Mindelis" & vbTab & "Nuno" & vbTab & "2 5th" & vbTab &
"972-2321" & _
 "|#30;Davis" & vbTab & "Miles" & vbTab & "1 High" & vbTab &
"345-2342" & _
 "|#40;Johnson" & vbTab & "Bob" & vbTab & "5 Hemlock" & vbTab &
"342-2321"
 fa.ComboList = s

The code above will display a drop-down combo with four columns. The items will have associated data
values 10, 20, 30, and 40. The value displayed in the cells will be the one in column 1 (first name). Because
the first character is a pipe, the box will be a drop-down combo, as opposed to a drop-down list box.

Note

The value -1 is reserved and may not be used as an entry ID.

What is the difference between ComboList and ColComboList?

The ComboList and ColComboList properties are closely related. They have the same function, and the
syntax used to define the lists is exactly the same. There are two differences:

132 · VSFlexGrid Control

The ColComboList property applies to an entire column. It may be set once, when the control is loaded, and
then you can forget about it. The ComboList property applies to the current cell only. To use it, you need to
trap the BeforeEdit event and set ComboList to the list that is applicable to the call about to be edited.

The ColComboList property performs data translation. If data values are supplied, they are stored on the grid,
not the actual string. The ComboList property does not perform this translation.

If all cells in a column are items picked from the same list, as is the case in most database applications, use the
ColComboList property. You will not need to handle the BeforeEdit event and your code will be cleaner and
more efficient. Also, you have the option of using data translation, which simplifies the code and increases
data integrity.

If different cells in the same column have different lists, as for example in a Property window, then you should
use the ComboList property. You will need to trap the BeforeEdit event and you will have no automatic value
translation.

Data Type

String

See Also

VSFlexGrid Control (page 73)

ComboSearch Property

Returns or sets whether combo lists should support smart searches.

Syntax

[form!]VSFlexGrid.ComboSearch[= ComboSearchSettings]

Remarks

When ComboSearch is set to a non-zero value, the control search for entries and highlight them as the user
types. This is similar to searching items on the grid using the AutoSearch property.

The ComboSearch capability makes data-entry substantially easier, especially when working with long lists.

The settings for the ComboSearch property are described below:

Constant Value Description

FlexCmbSearchNone 0 Don't search as the user types (use only the first
letter).

FlexCmbSearchLists 1 Search drop-down lists, but not combo boxes.

FlexCmbSearchCombos 2 Search combo boxes, but not drop-down lists.

FlexCmbSearchAll 3 Search combo boxes and drop-down lists (this is
the default setting).

For information on how to build drop-down lists and combo boxes, see the ComboList and ColComboList
properties.

Data Type

ComboSearchSettings (Enumeration)

Default Value

flexCmbSearchAll (3)

DataMember Property · 133

See Also

VSFlexGrid Control (page 73)

DataMember Property

Returns or sets the data member.

Syntax

[form!]VSFlexGrid.DataMember[= value As String]

Remarks

This property is available only in the ADO (OLEDB) version of the VSFlexGrid control.

The DataMember property is used when the DataSource property is set to a source defined with the Visual
Basic Data Environment. It contains the name of the data member to retrieve from the object referenced by the
DataSource property.

The Data Environment maintains collections of data (data sources) containing named objects (data members)
that will be represented as Recordset objects. The DataMember property determines which object specified by
the DataSource property will be bound to the control.

Note that if you are binding the control to a data control, you don't need to set this property. Data controls
contain only one data member which is used by default.

See also the DataSource and DataMode properties.

Data Type

String

See Also

VSFlexGrid Control (page 73)

DataMode Property

Returns or sets the type of data binding used by the control when it is connected to a data source (read-only or
read/write).

Syntax

[form!]VSFlexGrid.DataMode[= DataModeSettings]

Remarks

The settings for the DataMode property are described below:

Constant Value Description

flexDMFree 0 This setting causes the data to be read from the
database when the program starts, when the
data source is refreshed, and when the user
calls the DataRefresh method. Any direct
changes to the database (edits and cursor
movements) are ignored by the control. The
flexDMFree setting is equivalent to the data
binding implemented in the MSFlexGrid control.

134 · VSFlexGrid Control

Constant Value Description

flexDMBound 1 This setting causes the data in the database to
be permanently synchronized with the control.
The current row is linked to the database cursor,
so when the Row property changes, the
database cursor moves and vice-versa. All edits
to the control contents are updated in the
database and vice-versa. The flexDMBound
setting is similar to the data binding
implemented in the Microsoft DBGrid control.

flexDMBoundBatch 2 Similar to the flexDMBound setting, except the
source recordset is not updated automatically
after the user edits a cell.

flexDMBoundImmediate 3 Similar to the flexDMBound setting, except the
source recordset is updated automatically after
the user edits a cell.

flexDMBoundNoRowCount 4 Please provide description.

The flexDMBound mode handles updates to the recordset automatically, based on the setting of the recordset's
LockType property. The flexDMBoundBatch and flexDMBoundImmediate allow you to bypass the recordset's
LockType setting. This is usually a bad idea, and these settings should not be used unless you have a good
reason to do so.

When the DataMode property is set to a value other than flexDMFree, some properties and methods are
disabled or their behavior is restricted:

Property Limitation when Data-Bound

AddItem The second parameter of the AddItem method, the position
where the new row should be inserted, is ignored. New rows
are always appended to the database.

Rows, Cols These properties become read-only. You may add or remove
records from the database one at a time using the AddItem
and RemoveItem methods.

FixedRows, FixedCols These properties become read-only at runtime. You need to
decide how many fixed rows and columns you want at design
time.

Sort, RowPosition These properties are disabled. You may sort the database
records by modifying the SQL statement in the data source or
using the Sort method on the source recordset.

IsSubtotal This property becomes read-only. You may add or clear
subtotals using the Subtotal method.

Data Type

DataModeSettings (Enumeration)

See Also

VSFlexGrid Control (page 73)

DataSource Property · 135

DataSource Property

Returns or sets the data source.

Syntax

[form!]VSFlexGrid.DataSource[= DataSource]

Remarks

This property behaves differently in the ADO and DAO versions of the VSFlexGrid control.

OLEDB/ADO version (VSFLEX8.OCX)

The DataSource parameter is a reference to an object that qualifies as a data source, including ADO Recordset
objects and classes or user controls defined as data sources.

You may set the DataSource property at design time using the Property window. When you select the
DataSource property, you will get a drop-down list enumerating the sources available. These include sources
defined with Visual Basic's Data Environment as well as any controls defined as data sources, such as the
Microsoft ADO data control.

You may also set the DataSource property at runtime using the Visual Basic Set statement, as shown below:

 ' ADODC1 is a Microsoft ADO Data control
 Set fg.DataSource = ADODC1

DAO version (VSFLEX8D.OCX)

This property can only be set at design time. Use Visual Basic's properties window to set the DataSource
property to a Data control already on the form. Once this property is set, the contents of the grid will be
updated whenever the associated Data control is refreshed or when the DataRefresh method is called. You
cannot set or retrieve this property at run time.

See also the DataMember and DataMode properties.

Data Type

DataSource

See Also

VSFlexGrid Control (page 73)

DragMode Property

Returns/sets a value that determines whether manual or automatic drag mode is used.

Syntax

[[form!]VSFlexGrid.DragMode[= value As Integer]

See Also

VSFlexGrid Control (page 73)

Editable Property

Returns or sets whether the control allows in-cell editing.

Syntax

[form!]VSFlexGrid.Editable[= EditableSettings]

136 · VSFlexGrid Control

Remarks

If the Editable property is set to a non-zero value, the user may edit the cell contents by typing into the grid.

The settings for the Editable property are described below:

Constant Value Description

flexEDNone 0 The grid contents cannot be edited by the user.

flexEDKbd 1 The user may initiate edit mode by typing into the current
cell.

flexEDKbdMouse 2 The user may initiate edit mode by typing into the current
cell or by double-clicking it with the mouse.

True -1 Equivalent to flexEDKbd. This setting is used only to keep
compatibility with earlier versions of the control.

By default, the control goes into editing mode when the user presses the edit key (F2), the space bar, or any
printable character. If the Editable property is set to flexEDKbdMouse (2) the control will also go into edit mode
when the user double-clicks on a cell.

You may force the control into cell-editing mode using the EditCell method, or prevent it from entering edit
mode by trapping the BeforeEdit event and setting the Cancel parameter to True. You may cancel edit mode
using the Select statement to select any cell (including the cell being edited).

You may choose to use a regular edit box, drop-down list or drop-down combo, depending on the setting of
the ComboList and ColComboList properties. You may also specify an editing mask using the EditMask and
ColEditMask properties. Set these properties in response to the BeforeEdit event.

Use the ValidateEdit event to perform data validation, and the AfterEdit event for post-editing work such as
re-sorting the control.

To determine whether the control is in edit mode, use the EditWindow property (if it has a non-zero value,
the control is in edit mode).

Data Type

EditableSettings (Enumeration)

See Also

VSFlexGrid Control (page 73)

EditMask Property

Returns or sets the input mask used to edit cells.

Syntax

[form!]VSFlexGrid.EditMask[= value As String]

Remarks

The EditMask property allows you to specify an input mask for automatic input formatting and validation.
The mask syntax is similar to the one used by the Microsoft MaskedEdit control and by Microsoft Access.

Set the EditMask property in response to the BeforeEdit event, in the same way you would set the ComboList
property.

EditMask Property · 137

If the same mask is used to edit all values in a column, use the ColEditMask property instead. This tends to
simplify the code because you don't need to trap the BeforeEdit event.

When the user is done editing, the ValidateEdit event will be fired as usual. The Cancel parameter will be set to
True if the mask was not filled out properly, so in most cases you don't event need to implement the handler.
The default behavior ensures that only valid data will be entered.

The EditMask must be a string composed of the following symbols:

Wildcards

0 digit

9 digit or space

digit or sign

L letter

? letter or space

A letter or digit

a letter, digit, or space

& any character

Localized characters

. localized decimal separator

, localized thousand separator

: localized time separator

/ localized date separator

Command characters

\ next character is taken as a literal (not a special character)

> translate letters to uppercase

< translate letters to lowercase

; group delimiter (see below)

The group delimiter character is used to control additional options. If present in the mask string, then the part
of the mask to the left of the first delimiter is used as the actual mask. The part to the right is interpreted in this
way:

If a lowercase 'q' is present, the control edits in 'quiet' mode (no beeps on invalid characters),

The last character is used as a placeholder (instead of the default underscore).

For example:

' set the mask so the user can enter a phone number,
' with optional area code, and a state in capitals.
' this will beep on invalid keys.
fg.EditMask = "(###) 000-0000 St\ate\: >LL"

' similar mask, but in quiet mode (no beep for wrong keys)
' and with an asterisk instead of underscore for a placeholder:
fg.EditMask = "(###) 000-0000 St\ate\: >LL;q;*"

138 · VSFlexGrid Control

Here are some more commented examples:

EditMask String Description

"St\ate\; >LL" Is a valid format. The 'a' and ';' characters are escaped and thus taken as
literals. The '>' is used to ensure that the next two characters will be
represented in uppercase.

"St\ate\; >LL;q;*" Is a valid format. It is similar to the previous example, but the 'q' after the
delimiter puts the control in quiet mode. An asterisk '*' is used as
placeholder instead of the underscore, because that is the last character
after the delimiter.

"St; >LL" This is an invalid format. The mask itself is just "St" (the part to the left of
the ';' delimiter. There are no wildcards, so the user can't type anything. If
he could, the placeholder character would be "L" (last character after the
';' delimiter).

"; >LL" This is an invalid format. The first character is a delimiter, so there is no
real mask at all.

Data Type

String

See Also

VSFlexGrid Control (page 73)

EditMaxLength Property

Returns or sets the maximum number of characters that can be entered in the editor.

Syntax

[form!]VSFlexGrid.EditMaxLength[= value As Long]

Remarks

Set this property in the BeforeEdit event to limit the length of the text that may be entered while editing a cell.

Setting EditMaxLength to 0 allows editing of strings up to about 32k characters.

Changing this property while editing a cell does not affect the contents of the editor but will affect subsequent
editing.

The following code will allow the user to enter only 4 characters into the cell being edited.

Private Sub fg_BeforeEdit(ByVal Row As Long, ByVal Col As Long, Cancel
As Boolean)
 fg.EditMaxLength = 4
End Sub

Data Type

Long

See Also

VSFlexGrid Control (page 73)

EditSelLength Property · 139

EditSelLength Property

Returns or the number of characters selected in the editor.

Syntax

[form!]VSFlexGrid.EditSelLength[= value As Long]

Remarks

This property works in conjunction with the EditSelStart and EditSelText properties, while the control is in
cell-editing mode.

Use these properties for tasks such as setting the insertion point, establishing an insertion range, selecting
substrings in the editor, or clearing text. Used in conjunction with the Visual Basic Clipboard object, these
properties are useful for copy, cut, and paste operations.

Notes

1. Setting SelLength less than 0 causes a runtime error.

2. Setting SelStart greater than the text length sets the property to the existing text length.

3. Changing SelStart changes the selection to an insertion point and sets SelLength to 0.

4. Setting SelText to a new value replaces the selected text with the new string and sets SelLength to 0.

The following code selects characters 6 through 8 whenever a cell is clicked.

 Private Sub fg_Click()
 fg.EditCell
 fg.EditSelStart = 5
 fg.EditSelLength = 3
 End Sub

Data Type

Long

See Also

VSFlexGrid Control (page 73)

EditSelStart Property

Returns or sets the starting point of text selected in the editor.

Syntax

[form!]VSFlexGrid.EditSelStart[= value As Long]

Remarks

This property works in conjunction with the EditSelLength and EditSelText properties, while the control is in
cell-editing mode.

Use these properties for tasks such as setting the insertion point, establishing an insertion range, selecting
substrings in the editor, or clearing text. Used in conjunction with the Visual Basic Clipboard object, these
properties are useful for copy, cut, and paste operations.

Notes

1. Setting SelLength less than 0 causes a runtime error.

2. Setting SelStart greater than the text length sets the property to the existing text length.

140 · VSFlexGrid Control

3. Changing SelStart changes the selection to an insertion point and sets SelLength to 0.

4. Setting SelText to a new value replaces the selected text with the new string and sets SelLength to 0.

The following code selects characters 6 through 8 whenever a cell is clicked.

 Private Sub fg_Click()
 fg.EditCell
 fg.EditSelStart = 5
 fg.EditSelLength = 3
 End Sub

Data Type

Long

See Also

VSFlexGrid Control (page 73)

EditSelText Property

Returns or sets the string containing the current selection in the editor.

Syntax

[form!]VSFlexGrid.EditSelText[= value As String]

Remarks

This property works in conjunction with the EditSelStart and EditSelLength properties, while the control is in
cell-editing mode.

Use these properties for tasks such as setting the insertion point, establishing an insertion range, selecting sub-
strings in the editor, or clearing text. Used in conjunction with the Visual Basic Clipboard object, these
properties are useful for copy, cut, and paste operations.

Notes

1. Setting SelLength less than 0 causes a runtime error.

2. Setting SelStart greater than the text length sets the property to the existing text length.

3. Changing SelStart changes the selection to an insertion point and sets SelLength to 0.

4. Setting SelText to a new value replaces the selected text with the new string and sets SelLength to 0.

The following code replaces characters 6 through 8 with the word "COW" whenever a cell is clicked.

 Private Sub fg_Click()
 fg.EditCell
 fg.EditSelStart = 5
 fg.EditSelLength = 3
 fg.EditSelText = "COW"
 End Sub

Data Type

String

See Also

VSFlexGrid Control (page 73)

EditText Property · 141

EditText Property

Returns or sets the text in the cell editor.

Syntax

[form!]VSFlexGrid.EditText[= value As String]

Remarks

The EditText property allows you to read and modify the contents of the cell editor while it is active.

This property is useful mainly for handling the ValidateEdit event. When ValidateEdit event is fired, the cell
still contains the original value. The new (edited) value is available only through the EditText property.

For example, the code below shows a typical handler for the ValidateEdit event. In this case, column 1 only
accepts strings, and column 2 only accepts numbers greater than zero:

Sub fg_ValidateEdit(ByVal Row As Long, ByVal Col As Long, Cancel As
Boolean)
 Dim c$
 ' different validation rules for each column
 Select Case Col

 ' column 1 only accepts strings
 Case 1
 c = Left$(fg.EditText, 1)
 If UCaseS(c) < "A" And UCase$(c) > "Z" Then
 Beep: Cancel = True
 End If

 ' column 2 only accepts numbers > 0
 Case 2
 If Val(fg.EditText) <= 0 Then
 Beep: Cancel = True
 End If
 End Select
 End Sub

Data Type

String

See Also

VSFlexGrid Control (page 73)

EditWindow Property

Returns a handle to the grid's editing window, or 0 if the grid is not in edit mode.

Syntax

val& = [form!]VSFlexGrid.EditWindow

Remarks

You can use this property to determine whether the grid is in edit mode. If the grid is in edit mode,
EditWindow returns the window handle of the currently active text box or drop-down combo. If the grid is
not in edit mode, EditWindow returns zero.

142 · VSFlexGrid Control

For example, the following code prevents the user from scrolling the grid while a cell is being edited:

Private Sub fg_BeforeScroll(ByVal OldTopRow As Long, ByVal OldLeftCol
As Long, ByVal NewTopRow As Long, ByVal NewLeftCol As Long, Cancel As
Boolean)
 If fg.EditWindow <> 0 And OldTopRow <> NewTopRow Then
 Cancel = True
 End If
 End Sub

Data Type

Long

See Also

VSFlexGrid Control (page 73)

Ellipsis Property

Returns or sets whether the control will display ellipsis (...) after long strings.

Syntax

[form!]VSFlexGrid.Ellipsis[= EllipsisSettings]

Remarks

The Ellipsis property determines how the control displays strings that are too long to fit the available space in
a cell. By setting this property to a non-zero value, you can force the display of an ellipsis symbol ("...") to
indicate that part of the string has been truncated. The settings for the Ellipsis property are described below:

Constant Value Description
FlexNoEllipsis 0 Long strings are truncated, no ellipsis characters are

displayed.

FlexEllipsisEnd 1 Ellipsis characters are displayed at the end of long
strings.

FlexEllipsisPath 2 Ellipsis characters are displayed in the middle of long
strings.

Data Type

EllipsisSettings (Enumeration)

Default Value

flexNoEllipsis (0)

See Also

VSFlexGrid Control (page 73)

ExplorerBar Property

Returns or sets whether column headers are used to sort and/or move columns.

Syntax

[form!]VSFlexGrid.ExplorerBar[= ExplorerBarSettings]

ExtendLastCol Property · 143

Remarks

The ExplorerBar property allows users to use column headings to sort and move columns without any code.
Valid settings are described below:

Constant Value Description

FlexExNone 0 No ExplorerBar. Fixed rows behave as usual.

FlexExSort 1 Users may sort columns by clicking on their
headings.

FlexExMove 2 Users may move columns by dragging their
headings.

FlexExSortAndMove 3 Users may sort and move columns.

FlexExSortShow 5 Users may sort columns by clicking on their
headings. The control will show the current
sorting order by drawing an arrow on the
heading.

FlexExSortShowAndMove 7 Users may sort and move columns. The
control will show the current sorting order by
drawing an arrow on the heading.

FlexExMoveRows 8 Users may move rows by dragging their
headings (fixed cells on the left of each row).

Note that these values are a combination of binary flags and are not sequential. You may combine settings
using the Or operator. For example:

 ' allow sorting, moving rows, and moving columns
 fg.ExplorerBar = flexExMoveRows Or flexExSortShowAndMove.

By default, the ExplorerBar works like the one in Microsoft's Internet Explorer. One click sorts the column in
ascending order, the next in descending order. Any non-fixed column may be dragged to any non-fixed
position. The control fires events that allow you to customize this behavior. The events are BeforeSort,
AfterSort, BeforeMoveColumn, and AfterMoveColumn.

You must have at least one fixed row to be able to use the ExplorerBar's column moving and sorting
capabilities, and at least one fixed column to use the row moving capability. To move rows by dragging non-
fixed cells, see the DragRow method.

Data Type

ExplorerBarSettings (Enumeration)

Default Value

flexExNone (0)

See Also

VSFlexGrid Control (page 73)

ExtendLastCol Property

Returns or sets whether the last column should be adjusted to fit the control's width.

144 · VSFlexGrid Control

Syntax

[form!]VSFlexGrid.ExtendLastCol[= {True | False}]

Remarks

This property only affects painting. It does not modify the ColWidth property of the last column.

Data Type

Boolean

Default Value

False

See Also

VSFlexGrid Control (page 73)

FillStyle Property

Returns or sets whether changes to the Text or Format properties apply to the current cell or to the entire
selection.

Syntax

[form!]VSFlexGrid.FillStyle[= FillStyleSettings]

Remarks

The settings for the FillStyle property are described below:

Constant Value Description

flexFillSingle 0 Setting the Text property or any of the cell formatting
properties affects the current cell only.

flexFillRepeat 1 Setting the Text property or any of the cell formatting
properties affects the entire selected range.

The FillStyle property also determines whether changes caused by in-cell editing should apply to the current
cell only or to the entire selection.

Note

The FillStyle property does not work over discontinuous selections if the SelectionMode property is set to
flexSelectionListBox. For example, if you select rows 1, 4, and 10, only the selection that contains the current cell
will be modified.

Data Type

FillStyleSettings (Enumeration)

Default Value

flexFillSingle (0)

See Also

VSFlexGrid Control (page 73)

FindRow Property · 145

FindRow Property

Returns the index of a row that contains a specified string or RowData value.

Syntax

val& = [form!]VSFlexGrid.FindRow(Item As Variant, [Row As Long], [Col As Long], [CaseSensitive As
Boolean], [FullMatch As Boolean])

Remarks

The FindRow method allows you to look up rows based on cell contents or RowData values. The search is
much faster and easier to implement than a Visual Basic loop.

The parameters for the FindRow property are described below:

Item As Variant

This parameter contains the data being searched.

Row As Long (optional)

This parameter contains the rows where the search should start. The default value is FixedRows.

Col As Long (optional)

This parameter tells the control which column should be searched. By default, this value is set to -1, which
means the control will look for matches against RowData. If Col is set to a value greater than -1, then the
control will look for matches against the cell's contents for the given column.

CaseSensitive As Boolean (optional)

This parameter is True by default, which means the search is case-sensitive. Set it to False if you want a case-
insensitive search (e.g. when looking for "FOO" you may find "foo"). This parameter is only relevant when
you are looking for a string.

FullMatch As Boolean (optional)

This parameter is True by default, which means the search is for a full match. Set it to False if you want to
allow partial matches (e.g. when looking for "FOO" you may find "FOOBAR"). This parameter is only
relevant when you are looking for a string.

FindRow returns the index of the row where the data was found, or -1 if the data was not found.

The code below shows how this method is used:

 ' assign some data to row 40 and cell (40, 5)
 fg.RowData(30) = "MyRow"
 fg.TextMatrix(40, 5) = "MyCell"
 Debug.Print fg.FindRow("MyRow") ' find a row by its RowData
 > 30
 Debug.Print fg.FindRow("MyCell") ' no rows have RowData =
"MyCell"
 > -1
 Debug.Print fg.FindRow("MyCell", , 5) ' look for text in column 5
 > 40
 Debug.Print fg.FindRow("MYCELL", , 5) ' case-sensitive
search fails
 > -1
 Debug.Print fg.FindRow("MYCELL", , 5, False) ' case-insensitive
search succeeds
 > 40
 Debug.Print fg.FindRow("My", , 5) ' full-match search
fails
 > -1

146 · VSFlexGrid Control

 Debug.Print fg.FindRow("My", , 5, , False) ' partial-match
search succeeds
 > 40

Note

The FindRow method is useful for searching rows through code. To allow users to perform incremental
searches by typing into cells, use the AutoSearch property instead.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

FindRowRegex Property

Returns the index of the row that contains a match or -1 if no match was found.

Syntax

Property FindRowRegex(Pattern As String, Row As Long, Col As Long) As Long

Remarks

The parameters for the FindRowRegex property are described below:

Pattern As String

Pattern containing the regular expression to look for (see the Pattern property in the VBScript Regex object for
regular expression syntax).

Row As Long

The row where the search should start (use -1 to start at the first scrollable row).

Col As Long

The column to search.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

FixedAlignment Property

Returns or sets the alignment for the fixed rows in a column.

Syntax

[form!]VSFlexGrid.FixedAlignment(Col As Long)[= AlignmentSettings]

Remarks

The FixedAlignment property behaves like the ColAlignment property except that it only affects the
alignment of fixed cells. You can use this property to align headings differently than the rest of the cells.

You can also use the Cell property to control the alignment of individual cells.

For a list of valid settings, see the ColAlignment property.

FixedCols Property · 147

Data Type

AlignmentSettings (Enumeration)

See Also

VSFlexGrid Control (page 73)

FixedCols Property

Returns or sets the number of fixed (non-scrollable) columns.

Syntax

[form!]VSFlexGrid.FixedCols[= value As Long]

Remarks

Fixed columns remain visible when the user scrolls the contents of the grid. They are not selectable or editable
by the user (but you can select them with code and even allow the user to edit their contents by selecting them
and invoking the EditCell method). You can set FixedCols to any value between zero and the total number of
columns.

The following line of code places 3 fixed columns at the left edge of the grid.

 fg.FixedCols = 3

Fixed columns are typically used in spreadsheet applications to display row numbers or other types of labels.

To format the fixed cells, use the BackColorFixed, ForeColorFixed, GridLinesFixed, and FixedAlignment
properties.

You can create non-scrollable columns that can be selected and edited using the FrozenCols property.

If the AllowUserResizing property is set to a non-zero value, the fixed cells allow the user to resize row
heights and column widths at run time.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

FixedRows Property

Returns or sets the number of fixed (non-scrollable) rows.

Syntax

[form!]VSFlexGrid.FixedRows[= value As Long]

Remarks

Fixed rows remain visible when the user scrolls the contents of the grid. They are not selectable or editable by
the user (but you can select them with code and even allow the user to edit their contents by selecting them
and invoking the EditCell method). You can set FixedRows to any value between zero and the total number
of rows. The following line of code places 3 fixed rows at the top edge of the grid:

 fg.FixedRows = 3

Fixed rows are typically used in spreadsheet applications to display column headers, and in database
applications to display field names. To format the fixed cells, use the BackColorFixed, ForeColorFixed,
GridLinesFixed, and FixedAlignment properties.

148 · VSFlexGrid Control

You can create non-scrollable rows that can be selected and edited using the FrozenRows property.

If the AllowUserResizing property is set to a non-zero value, the fixed cells allow the user to resize row
heights and column widths at run time. If the ExplorerBar property is set to a non-zero value, the fixed rows
allow the user to sort and move columns with the mouse.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

Flags Property

Gets or sets flags that affect the behavior of the control.

Syntax

[form!]VSFlexGrid.Flags[= ControlFlagsSettings]

Remarks

The settings for the Flags property are described below:

Constant Value Description

flexCFNone 0 No flags

flexCFV7SelectionEvents 1 Selection events (BeforeSelChange,
AfterSelChange) are fired only when the Row/Col
parameters refer to valid coordinates.

flexCFAutoClipboard 2 Causes the control to handle clipboard keys
automatically

Copy: Ctrl+C, Ctrl+Ins
Cut: Ctrl+X, Shift+Del (if editable)
Paste: Ctrl+V, Shift+Ins (if editable)
Delete: Del (if editable)

flexCFNoEditIndent 4 Causes the edit control to use the old behavior: align
to the left, no indent.

flexCFBindToBinaryFields 8 Causes the grid to show binary fields when it is bound
to a data source.

By default, VSFlexGrid fires selection change events whenever the selection changes, even when the cell
coordinates are invalid (e.g., the selection was removed by setting Row = -1, or the old row was removed with
Rows = 1).

If you set fg.Flags = flexCFV7SelectionEvents, then the control will fire selection events (BeforeSelChange,
AfterSelChange) only when the Row/Col parameters refer to valid coordinates. (This is the same behavior as
in VSFlexGrid version 7.)

See Also

VSFlexGrid Control (page 73)

FlexDataSource Property · 149

FlexDataSource Property

Returns or sets a custom data source for the control.

Syntax

[form!]VSFlexGrid.FlexDataSource[= IVSFlexDataSource]

Remarks

The VSFlexGrid control can be bound to several types of data source, including ADO or DAO recordsets,
Variant arrays, and other VSFlexGrid controls. The FlexDataSource property is yet another option, based on
a custom COM interface that is easy to implement and very flexible.

The main advantages of data-binding through the FlexDataSource property are speed and flexibility. The
main disadvantage is that you have to write more code than with the other options. You should consider using
the FlexDataSource property when you have large amounts of data stored in custom structures or objects
(other than database recordsets). By using the FlexDataSource property, you may display and edit the data in-
place. There is no need to copy it to the grid and save it back later. In fact, the data may even be mostly virtual,
consisting of dynamically calculated values rather than static information.

When you assign a new data source to the FlexDataSource property, the control will automatically set each
column's header text and ColKey property based on the data source's field name. You may change these
values after setting the FlexDataSource property, if you wish.

Note

When bound to a FlexDataSource, values on fixed rows are not regarded as bound data. You may set or
retrieve them with code without affecting the data source. Fixed columns, on the other hand, are regarded as
bound data. Their contents are read from and written to the data source.

To bind the VSFlexGrid control to a FlexDataSource property, you need to implement an object that exposes
the IVSFlexDataSource COM interface. The interface is very simple. It consists of only two methods:
GetData and SetData. GetData(Row, Col) returns a string to be displayed by the grid at the specified position.
It is called by the grid when it needs to display a value. SetData(Row, Col, Data) updates the data source at the
specified position with the new value. It is called by the grid when the user edits a cell.

The distribution CD includes sample code that show how to implement and use the FlexDataSource object in
a fairly realistic scenario, both in Visual Basic and Visual C++. The following tutorial is a very simple example
of how to use the FlexDataSource property.

Step 1: Create the project

Start a new Visual Basic project and add a VSFlexGrid control to the form (you may use any version: ADO,
DAO, or Light). Chang the name of the grid control to fs.

Step 2: Create the FlexDataSource object

Add a new class module to your project by selecting the Project | Add Class Module command from the
Visual Basic menu. On the new class code window, type the following statement:

 Implements IVSFlexDataSource

This tells the world that the new class implements the IVSFlexDataSource methods and that they are available
to anyone who cares to use them. Now select the IVSFlexDataSource item from the Object Box (the drop-
down list on the top left of the code window). VB will immediately create a "stub" (empty function) for the
GetFieldCount method. Now click on the Procedures/Events Box (the drop-down list on the top right of the
code window) and select each method to create stubs for each one. Here is what the code window should look
like by now:

 Option Explicit
 Implements IVSFlexDataSource

150 · VSFlexGrid Control

Private Function IVSFlexDataSource_GetFieldCount() As Long
End Function

Private Function IVSFlexDataSource_GetFieldName(ByVal Field As Long) As
String
End Function

Private Function IVSFlexDataSource_GetRecordCount() As Long
End Function

Private Function IVSFlexDataSource_GetData(ByVal Field As Long, ByVal
Record As Long) As String
End Function

Private Sub IVSFlexDataSource_SetData(ByVal Field As Long, ByVal Record
As Long, ByVal newData As String)
End Sub

Step 3: Implement the Data Structure

In this example, the data will be completely virtual. We will simply display a table of angles in degrees and
radians, their sines, and co-sines. The table will have four "fields" and 360 "records". Here is the code needed
to implement this structure:

Private Function IVSFlexDataSource_GetFieldCount() As Long
 IVSFlexDataSource_GetFieldCount = 4
End Function

Private Function IVSFlexDataSource_GetRecordCount() As Long
 IVSFlexDataSource_GetRecordCount = 360
End Function

Private Function IVSFlexDataSource_GetFieldName(ByVal Field As Long) As
String
 Select Case Field
 Case 0: IVSFlexDataSource_GetFieldName = "Angle (Deg)"
 Case 1: IVSFlexDataSource_GetFieldName = "Angle (Rad)"
 Case 2: IVSFlexDataSource_GetFieldName = "Sine"
 Case 3: IVSFlexDataSource_GetFieldName = "Co-Sine"
 End Select
 End Function

Now that we have defined the data structure, we need to implement the functions that will supply the actual
data.

Step 3: Implement the GetData and SetData methods

The GetData method is responsible for providing data to the consumer. In this example, there is no static
data, only calculated fields:

Private Function IVSFlexDataSource_GetData(ByVal Field As Long, ByVal
Record As Long) As String
 Select Case Field
 Case 0: IVSFlexDataSource_GetData = Record
 Case 1: IVSFlexDataSource_GetData = Record / 180# * 3.1416
 Case 2: IVSFlexDataSource_GetData = Sin(Record / 180# *
3.1416)
 Case 3: IVSFlexDataSource_GetData = Cos(Record / 180# *
3.1416)
 End Select
 End Function

FloodColor Property · 151

The SetData method is responsible for updating the data new information supplied by the user (e.g. by editing
a grid cell). In this case, the data cannot be changed, so any attempt to do it will simply raise an error:

Private Sub IVSFlexDataSource_SetData(ByVal Field As Long, ByVal Record
As Long, ByVal newData As String)
 Err.Raise 666, "IVSFlexDataSource", "This data is read-only."
End Sub

The SetData method is trivial in this case, but in a more realistic application it could be used to perform data-
validation and to allow editing of certain columns only.

Step 5: Hook up the VSFlexGrid and the Data Provider

Now that the FlexDataSource object is ready, all we need to do is hook it up to the grid. Double click on the
main form (the one with the grid on it), and add the following code to the Form_Load event:

 Private Sub Form_Load()
 Dim fds As New Class1 ' create the data source object
 fg.FlexDataSource = fds ' assign it to the grid
 fg.ColFormat(-1) = "#.##" ' format grid columns
 fg.ColFormat(0) = ""
 End Sub

Run the project and you will see that it loads very quickly, and displays the information as expected. Just for
fun, try changing the value returned by the GetRecordCount method to a really large value (say 500,000 or so)
and run the project again. You will notice there's little or no speed degradation.

This is the end of the tutorial. For more details, refer to the samples on the distribution CD.

Data Type

IVSFlexDataSource

See Also

VSFlexGrid Control (page 73)

FloodColor Property

Returns or sets the color used to flood cells.

Syntax

[form!]VSFlexGrid.FloodColor[= colorref&]

Remarks

The color specified is used for painting the flooded portion of cells which have the CellFloodPercent property
set to a non-zero value. To maximize performance, this color is always mapped to the nearest solid color.

Any of the following FloodColor lines will paint the left half of the current cell blue.

 fg.CellFloodPercent = 50
 fg.FloodColor = &HFF0000 ' using a hex value
 fg.FloodColor = vbBlue ' using a VB constant
 fg.FloodColor = RGB(0, 0, 255) ' using the RGB function

To control the flooding color of individual cells, set the Cell(flexcpFloodColor) property.

For details and an example, see the CellFloodPercent property.

Data Type

Color

152 · VSFlexGrid Control

See Also

VSFlexGrid Control (page 73)

FocusRect Property

Returns or sets the type of focus rectangle to be displayed around the current cell.

Syntax

[form!]VSFlexGrid.FocusRect[= FocusRectSettings]

Remarks

The settings for the FocusRect property are described below:

Constant Value Description

flexFocusNone 0 Do not show a focus rectangle.

flexFocusLight 1 Show a one-pixel wide focus rectangle.

flexFocusHeavy 2 Show a two-pixel wide focus rectangle.

flexFocusSolid 3 Show focus rectangle as a flat frame (the color is
determined by the BackColorSel property).

flexFocusRaised 4 Show focus rectangle as a raised frame.

flexFocusInset 5 Show focus rectangle as an inset frame.

If a focus rectangle is drawn, then the current cell is painted using the regular background color, as in most
spreadsheets and grids. Otherwise, the current cell is painted using the selected background color
(BackColorSel).

Data Type

FocusRectSettings (Enumeration)

Default Value

flexFocusLight (1)

See Also

VSFlexGrid Control (page 73)

FontBold Property

Determines whether the font is bold.

Syntax

[form!]VSFlexGrid.FontBold [= {True | False}]

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

FontItalic Property · 153

FontItalic Property

Determines whether the font is italicized.

Syntax

[form!]VSFlexGrid.FontItalic [= {True | False}]

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

FontName Property

Returns or sets the name of the font.

Syntax

[form!]VSFlexGrid.FontName [= value As String]

Data Type

String

See Also

VSFlexGrid Control (page 73)

FontSize Property

Determines the size of the font.

Syntax

[form!]VSFlexGrid.FontSize [= value As Single]

Data Type

Single

See Also

VSFlexGrid Control (page 73)

FontStrikethru Property

Determines the strikethru of the font.

Syntax

[form!]VSFlexGrid.FontStrikethru [= {True | False}]

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

154 · VSFlexGrid Control

FontUnderline Property

Determines the font is underlined.

Syntax

[form!]VSFlexGrid.FontUnderline [= {True | False}]

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

FontWidth Property

Returns or sets the width of the font, in points.

Syntax

[form!]VSFlexGrid.FontWidth [= value As Single]

Data Type

Single

See Also

VSFlexGrid Control (page 73)

ForeColor Property

Returns or sets the foreground color of the non-fixed cells.

Syntax

[form!]VSFlexGrid.ForeColor[= colorref&]

Remarks

This property works in conjunction with the ForeColorFixed, ForeColorSel, and ForeColorFrozen
properties to specify the color used to draw text.

ForeColor The color used to draw text in the scrollable area of the control.

ForeColorFixed The color used to draw text in the fixed rows and columns (see
the FixedRows and FixedCols properties).

ForeColorSel The color used to draw text in selected cells (see the
HighLight property).

ForeColorFrozen The color used to draw frozen cells (see the FrozenRows and
FrozenCols properties).

You may set the text color of individual cells using the Cell(flexcpForeColor) property.

Data Type

Color

ForeColorFixed Property · 155

See Also

VSFlexGrid Control (page 73)

ForeColorFixed Property

Returns or sets the foreground color of the fixed rows and columns.

Syntax

[form!]VSFlexGrid.ForeColorFixed[= colorref&]

Remarks

This property works in conjunction with the ForeColor, ForeColorSel, and ForeColorFrozen properties to
specify the color used to draw text.

ForeColor The color used to draw text in the scrollable area of the
control.

ForeColorFixed The color used to draw text in the fixed rows and columns (see
the FixedRows and FixedCols properties).

ForeColorSel The color used to draw text in selected cells (see the
HighLight property).

ForeColorFrozen The color used to draw frozen cells (see the FrozenRows and
FrozenCols properties).

You may set the text color of individual cells using the Cell(flexcpForeColor) property.

Data Type

Color

See Also

VSFlexGrid Control (page 73)

ForeColorFrozen Property

Returns or sets the foreground color of the frozen rows and columns.

Syntax

[form!]VSFlexGrid.ForeColorFrozen[= colorref&]

Remarks

This property works in conjunction with the ForeColor, ForeColorSel, and ForeColorFixed properties to
specify the color used to draw text.

ForeColor The color used to draw text in the scrollable area of the control.

ForeColorFixed The color used to draw text in the fixed rows and columns (see
the FixedRows and FixedCols properties).

ForeColorSel The color used to draw text in selected cells (see the HighLight
property).

156 · VSFlexGrid Control

ForeColorFrozen The color used to draw frozen cells (see the FrozenRows and
FrozenCols properties).

You may set the text color of individual cells using the Cell(flexcpForeColor) property.

Data Type

Color

See Also

VSFlexGrid Control (page 73)

ForeColorSel Property

Returns or sets the foreground color of the selected cells.

Syntax

[form!]VSFlexGrid.ForeColorSel[= colorref&]

Remarks

This property works in conjunction with the ForeColor, ForeColorFrozen, and ForeColorFixed properties to
specify the color used to draw text.

ForeColor The color used to draw text in the scrollable area of the control.

ForeColorFixed The color used to draw text in the fixed rows and columns (see
the FixedRows and FixedCols properties).

ForeColorSel The color used to draw text in selected cells (see the HighLight
property).

ForeColorFrozen The color used to draw frozen cells (see the FrozenRows and
FrozenCols properties).

You may set the text color of individual cells using the Cell(flexcpForeColor) property.

Data Type

Color

See Also

VSFlexGrid Control (page 73)

FormatString Property

Assigns column widths, alignments, and fixed row and column text.

Syntax

[form!]VSFlexGrid.FormatString[= value As String]

Remarks

Use FormatString at design time to define the following elements of the control: number of rows and
columns, text for row and column headings, column width, and column alignment.

The FormatString is made up of segments separated by pipe characters ("|"). The text between pipes defines a
column, and it may contain the special alignment characters "<", "^", or ">", to align the entire column to the
left, center, or right. The text is assigned to row zero, and its width defines the width of each column. The

FrozenCols Property · 157

FormatString may also contain a semi-colon (";"), which causes the remaining of the string to be interpreted as
row heading and width information. The text is assigned to column zero, and the longest string defines the
width of column zero. If the first character in the FormatString is an equals sign ("="), then all non-fixed rows
will have the same width.

The control will create additional rows and columns to accommodate all fields defined by the FormatString,
but it will not delete rows or columns if a few fields are specified.

The FormatString property is obsolete. Use the Columns property page to set up your columns instead.

Data Type

String

See Also

VSFlexGrid Control (page 73)

FrozenCols Property

Returns or sets the number of frozen (editable but non-scrollable) columns.

Syntax

[form!]VSFlexGrid.FrozenCols[= value As Long]

Remarks

Cells in frozen columns can be selected and edited, but they remain visible when the user scrolls the contents
of the control horizontally.

Freezing columns is useful when the grid is used as a data browser. It allows users to user to scroll the contents
of the control while keeping the FrozenCols leftmost columns visible. If you set the AllowUserFreezing
property to a non-zero value, the may freeze or thaw columns at run time by dragging the solid line between
the frozen and scrollable areas of the grid.

You may customize the appearance of the frozen areas of the grid using the BackColorFrozen and
ForeColorFrozen properties. The solid line between the frozen and scrollable areas of the grid is drawn using
the color specified by the SheetBorder property.

Data Type

Long

Default Value

0

See Also

VSFlexGrid Control (page 73)

FrozenRows Property

Returns or sets the number of frozen (editable but non-scrollable) rows.

Syntax

[form!]VSFlexGrid.FrozenRows[= value As Long]

Remarks

Cells in frozen rows can be selected and edited, but they remain visible when the user scrolls the contents of
the control vertically.

158 · VSFlexGrid Control

Freezing rows is useful when the top rows are used to display information that should be kept visible, such as
subtotals or a "query-by-example" search row. If you set the AllowUserFreezing property to a non-zero value,
the may freeze or thaw rows at run time by dragging the solid line between the frozen and scrollable areas of
the grid.

You may customize the appearance of the frozen areas of the grid using the BackColorFrozen and
ForeColorFrozen properties. The solid line between the frozen and scrollable areas of the grid is drawn using
the color specified by the SheetBorder property.

Data Type

Long

Default Value

0

See Also

VSFlexGrid Control (page 73)

GridColor Property

Returns or sets the color used to draw the grid lines between the non-fixed cells.

Syntax

[form!]VSFlexGrid.GridColor[= colorref&]

Remarks

The GridColor and GridLines properties determine the appearance of the grid lines displayed in the scrollable
area of the grid. GridColorFixed and GridLinesFixed determine the appearance of the grid lines displayed in
the fixed area of the grid.

The GridColor property is ignored when GridLines is set to one of the 3D styles. Raised and inset grid lines
are always drawn using the system-defined colors for shades and highlights.

Data Type

Color

See Also

VSFlexGrid Control (page 73)

GridColorFixed Property

Returns or sets the color used to draw the grid lines between the fixed cells.

Syntax

[form!]VSFlexGrid.GridColorFixed[= colorref&]

Remarks

The GridColorFixed and GridLinesFixed properties determine the appearance of the grid lines displayed in
the fixed area of the grid. GridColor and GridLines determine the appearance of the grid lines displayed in
the scrollable area of the grid.

The GridColorFixed property is ignored when GridLinesFixed is set to one of the 3D styles. Raised and inset
grid lines are always drawn using the system-defined colors for shades and highlights.

GridLines Property · 159

Data Type

Color

See Also

VSFlexGrid Control (page 73)

GridLines Property

Returns or sets the type of lines to be drawn between non-fixed cells.

Syntax

[form!]VSFlexGrid.GridLines[= GridStyleSettings]

Remarks

The GridLines and GridColor properties determine the appearance of the grid lines displayed in the scrollable
area of the grid. GridLinesFixed and GridColorFixed determine the appearance of the grid lines displayed in
the fixed area of the grid. The settings for the GridLines property are described below:

Constant Value Description

flexGridNone 0 Do not draw grid lines between cells.

flexGridFlat 1 Draw flat lines with color and width determined by
the GridColor and GridLineWidth properties.

flexGridInset 2 Draw inset lines between cells.

flexGridRaised 3 Draw raised lines between cells.

flexGridFlatHorz 4 Draw flat lines between rows, no lines between
columns.

flexGridInsetHorz 5 Draw inset lines between rows, no lines between
columns.

flexGridRaisedHorz 6 Draw raised lines between rows, no lines between
columns.

flexGridSkipHorz 7 Draw an inset effect around every other row.

flexGridFlatVert 8 Draw flat lines between columns, no lines between
rows.

flexGridInsetVert 9 Draw inset lines between columns, no lines
between rows.

flexGridRaisedVert 10 Draw raised lines between columns, no lines
between rows.

flexGridSkipVert 11 Draw an inset effect around every other column.

flexGridExplorer 12 Draw button-like frames around each cell.

flexGridExcel 13 Draw button-like frames around each cell,
highlighting the headings for the current selection.
This setting should only be applied to the
GridLinesFixed property.

flexGridDataGrid 14 Please provide description.

160 · VSFlexGrid Control

The GridColor property is ignored when GridLines is set to one of the 3D styles. Raised and inset grid lines
are always drawn using the system-defined colors for shades and highlights.

Data Type

GridStyleSettings (Enumeration)

Default Value

flexGridFlat (1)

See Also

VSFlexGrid Control (page 73)

GridLinesFixed Property

Returns or sets the type of lines to be drawn between fixed cells.

Syntax

[form!]VSFlexGrid.GridLinesFixed[= GridStyleSettings]

Remarks

The GridLinesFixed and GridColorFixed properties determine the appearance of the grid lines displayed in
the fixed area of the grid. GridLines and GridColor determine the appearance of the grid lines displayed in
the scrollable area of the grid.

The settings for the GridLinesFixed property are the same as those used for the GridLines property. The
flexGridExcel (13) setting should only be used with the GridLinesFixed property. This setting causes the fixed
rows and columns to show a highlighted area corresponding to the current selection. This makes it easy for
users to identify which rows and columns are selected on large grids.

The GridColorFixed property is ignored when GridLinesFixed is set to one of the 3D styles. Raised and inset
grid lines are always drawn using the system-defined colors for shades and highlights.

Data Type

GridStyleSettings (Enumeration)

Default Value

flexGridInset (2)

See Also

VSFlexGrid Control (page 73)

GridLineWidth Property

Returns or sets the width of the grid lines, in pixels.

Syntax

[form!]VSFlexGrid.GridLineWidth[= value As Integer]

Remarks

The GridLineWidth property determines the thickness, in pixels, of the grid lines when the GridLineWidth
property or GridLinesFixed property is set to one of the flat styles (flexGridFlat, flexGridFlatHorz,
flexGridFlatVert). Raised and inset grid lines have fixed width and cannot be changed.

GroupCompare Property · 161

Data Type

Integer

Default Value

1

See Also

VSFlexGrid Control (page 73)

GroupCompare Property

Returns or sets the type of comparison used when grouping cells.

Syntax

Property GroupCompare As MergeCompareSettings

Remarks

By default, the Subtotal method will group cells when there is an exact match between adjacent cells. This
property allows you to control the comparison parameters (case-insensitive and trimming, like
MergeCompare).

Data Type

MergeCompareSettings

See Also

VSFlexGrid Control (page 73)

HighLight Property

Returns or sets whether selected cells will be highlighted.

Syntax

[form!]VSFlexGrid.HighLight[= ShowSelSettings]

Remarks

The settings for the HighLight property are described below:

Constant Value Description

FlexHighlightNever 0 Never highlight the selected range. Selected
Ranges will not be visible to the user.

FlexHighlightAlways 1 Always highlight the selected range.

FlexHighlightWithFocus 2 Highlight the selected range only when the Control
has the focus.

Highlighting ranges that contain merged cells may lead to non-rectangular shapes being highlighted. If this is
undesirable, you may disable the highlighting by setting HighLight to flexHighlightNever.

You may also prevent extended selections of any kind by setting the AllowSelection property to False.

162 · VSFlexGrid Control

Data Type

ShowSelSettings (Enumeration)

Default Value

flexHighlightAlways (1)

See Also

VSFlexGrid Control (page 73)

IsCollapsed Property

Returns or sets whether an outline row is collapsed or expanded.

Syntax

[form!]VSFlexGrid.IsCollapsed(Row As Long)[= CollapsedSettings]

Remarks

This property is used when the grid is in outline mode. It allows you to expand or collapse outline nodes
through code. If the OutlineBar property is set to a non-zero value, the user can also collapse and expand
nodes with the mouse.

The settings for the IsCollapsed property are described below:

Constant Value Description

FlexOutlineExpanded 0 Show all child nodes.

FlexOutlineSubtotals 1 Show child nodes but collapse them.

FlexOutlineCollapsed 2 Hide all child nodes.

When a node is collapsed or expanded, the control fires the BeforeCollapse and AfterCollapse events. You
may trap these events to prevent certain nodes from being collapsed or expanded, or to populate the outline
asynchronously. See the BeforeCollapse event for an example.

Setting the IsCollapsed property for a row that is not an outline node applies the setting to the row's parent
node. If a row has no parent node, an Invalid Index error will occur.

For more details on creating and using outlines, see the Outline Demo.

Data Type

CollapsedSettings (Enumeration)

See Also

VSFlexGrid Control (page 73)

IsSearching Property

Returns a value that indicates whether the grid is in search mode.

Syntax

Property IsSearching As Boolean

Data Type

Boolean

IsSelected Property · 163

See Also

VSFlexGrid Control (page 73)

IsSelected Property

Returns or sets whether a row is selected (for listbox-type selections).

Syntax

[form!]VSFlexGrid.IsSelected(Row As Long)[= {True | False}]

Remarks

This property allows you to select individual rows, not necessarily adjacent, independently of the RowSel
property and ColSel property.

To implement this type of row selection, you will typically set the SelectionMode property to
flexSelectionListBox, which allows the user to select individual rows using the mouse or the keyboard, and to
toggle the selection for a row by CTRL-clicking on it. If you set SelectionMode property to something other
than flexSelectionListBox, you may still select and de-select rows using the IsSelected property, but the user will
not be able to alter the selection with the mouse or keyboard (unless you write the code to do it).

You may enumerate the selected rows using the SelectedRows and SelectedRow properties.

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

IsSubtotal Property

Returns or sets whether a row contains subtotals (as opposed to data).

Syntax

[form!]VSFlexGrid.IsSubtotal(Row As Long)[= {True | False}]

Remarks

This property allows you to determine whether a given row is a regular row or a subtotal row, or to create
subtotal rows manually (as opposed to using the Subtotal method).

There are two differences between subtotal rows and regular rows:

1. Subtotal rows may be added and removed automatically with the Subtotal method.

2. When using the control as an outliner, subtotal rows behave as outline nodes, while regular rows
behave as branches.

You may use this property to build custom outlines. This requires three steps:

1. Set the IsSubtotal property to True for all outline nodes.

2. Set the RowOutlineLevel property for each outline node.

3. Set the OutlineBar and OutlineCol properties if you want to display an outline tree, which the user
can use to collapse and expand the outline.

For more details, see the Outline Demo.

164 · VSFlexGrid Control

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

LeftCol Property

Returns or sets the zero-based index of the leftmost non-fixed column displayed in the control.

Syntax

[form!]VSFlexGrid.LeftCol[= value As Long]

Remarks

Setting the LeftCol property causes the control to scroll through its contents horizontally so that the given
column becomes the leftmost visible column. This is often useful when you want to synchronize two or more
controls so that when one of them scrolls, the other scrolls as well.

To scroll vertically, use the TopRow property.

When setting this property, the largest possible column number is the total number of columns minus the
number of columns that will fit the display. Attempting to set LeftCol to a greater value will cause the control
to set it to the largest possible value (no error will occur).

To ensure that a given cell is visible, use the ShowCell method instead.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

MergeCells Property

Returns or sets whether cells with the same contents will be merged into a single cell.

Syntax

[form!]VSFlexGrid.MergeCells[= MergeSettings]

Remarks

The MergeCells property is used in conjunction with the MergeRow, MergeCol, and MergeCompare
properties to control whether and how cells are merged for display. Merging cells allows you to display data in
a clear, appealing way because it highlights groups of identical information. It also gives you flexibility to build
tables similar to the ones you can create in HTML or using Microsoft Word, both of which support merged
cells.

To create tables with merged cells, you must set the MergeCells property to a value other than flexMergeNever,
and then set the MergeRow and MergeCol properties to True for the rows and columns you wish to merge
(except when using the flexMergeSpill mode). After these properties are set, the control will automatically merge
neighboring cells that have the same contents. Whenever the cell contents change, the control updates the
merging state.

The algorithm used to compare cell contents and determine whether they should be merged is set through the
MergeCompare property.

The settings for the MergeCells property are described below:

MergeCells Property · 165

Constant Value Description

flexMergeNever 0 Do not merge cells.

flexMergeFree 1 Merge any adjacent cells with same Contents
(if they are on a row with RowMerge set to
True or a column with MergeCol set to True).

flexMergeRestrictRows 2 Merge rows only if cells above are also
Merged.

flexMergeRestrictColumns 3 Merge columns only if cells to the left are also
merged.

flexMergeRestrictAll 4 Merge cells only if cells above or to the left are
also merged.

flexMergeFixedOnly 5 Merge only fixed cells. This setting is Useful
for setting up complex headers for the data
and preventing the data itself from being
merged.

flexMergeSpill 6 Allow long entries to spill into empty Adjacent
cells.

flexMergeOutline 7 Allow entries in subtotal rows (outline nodes)
to spill into empty adjacent cells.

The flexMergeSpill setting is a little different from the others. It is the only setting that does not require you to
set the MergeCol and MergeRow properties, and that does not merge cells with identical settings. Instead, it
allows cells with long entries to spill into adjacent cells as long as they are empty. This is often useful when
creating outlines. You may use a narrow column to hold group titles, which can then spill into the cells to the
right. The picture below shows an example using the flexMergeSpill setting. Notice how some cells with long
entries spill into adjacent empty cells or get truncated if the adjacent cell is not empty:

The flexMergeOutline setting is similar to flexMergeSpill, except it merges cells in subtotal rows with empty
adjacent cells. This is good when you want to display only a node name on the subtotal rows (nodes) and data
on the regular (non-node) rows.

The difference between the Free and Restricted settings is whether cells with the same contents should always
be merged (Free settings) or only when adjacent cells to the left or to the top are also merged.

166 · VSFlexGrid Control

The examples below illustrate the difference.

 ' regular spreadsheet view
 fg.MergeCells = flexMergeNever
 fg.MergeCol(0) = True: fg.MergeCol(1) = True: fg.MergeCol(2) = True
 fg.MergeCol(3) = False

 ' free merging: notice how the first region cell (East) merges
 ' across employees (Donna and John) to its left.
 fg.MergeCells = flexMergeFree
 fg.MergeCol(0) = True: fg.MergeCol(1) = True: fg.MergeCol(2) = True
 fg.MergeCol(3) = False

 ' restricted merging: notice how the first region cell (East)
 ' no longer merges across employees to its left.
 fg.MergeCells = flexMergeRestrictAll
 fg.MergeCol(0) = True: fg.MergeCol(1) = True: fg.MergeCol(2) = True
 fg.MergeCol(3) = False

MergeCellsFixed Property · 167

Data Type

MergeSettings (Enumeration)

Default Value

flexMergeNever (0)

See Also

VSFlexGrid Control (page 73)

MergeCellsFixed Property

Allows users to set different merging criteria for fixed vs. scrollable cells.

Syntax

Property MergeCellsFixed As MergeSettings

Remarks

Setting MergeCells automatically sets MergeCellsFixed to the same value (for compatibility with existing
code).

If the MergeCells and MergeCellFixed settings are different, files saved with SaveGrid(All) method will not
be read by older versions of the control.

Data Type

MergeSettings

See Also

VSFlexGrid Control (page 73)

MergeCol Property

Returns or sets whether a column will have its cells merged (see also the MergeCells property).

Syntax

[form!]VSFlexGrid.MergeCol(Col As Long)[= {True | False}]

Remarks

The MergeCol property is used in conjunction with the MergeCells, MergeRow, and MergeCompare
properties to control whether and how cells are merged for display.

The MergeCells property is used to enable cell merging for the entire control.

After setting the MergeCells property to an appropriate value, the MergeRow and MergeCol properties are
used to determine which rows and columns should have their cells merged. By default, MergeRow and
MergeCol are set to False, so no merging takes place. If you set them to True for a specific row or column,
then adjacent cells in that row or column will be merged if their contents are equal.

The rule used to compare cell contents is controlled by the MergeCompare property.

The Col parameter should be set to a value between zero and Cols - 1 to set MergeCol for a single column, or -1
to set all columns.

For more details and examples, see the MergeCells property.

168 · VSFlexGrid Control

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

MergeCompare Property

Returns or sets the type of comparison used when merging cells.

Syntax

[form!]VSFlexGrid.MergeCompare[= MergeCompareSettings]

Remarks

The MergeCompare property is used in conjunction with the MergeCells, MergeRow, and MergeCol
properties to control whether and how cells should be compared when determining whether to merge them or
not.

The settings for the MergeCompare property are described below:

Constant Value Description

FlexMCExact 0 Cells are merged only if their contents match
exactly.

FlexMCNoCase 1 Cells are merged if their contents match in a case-
insensitive comparison.

FlexMCTrimNoCase 2 Cells are merged if their contents match after
trimming blanks in a case-insensitive comparison.

FlexMCIncludeNulls 3 Empty cells are merged.

For more details, see the MergeCells property.

Data Type

MergeCompareSettings (Enumeration)

Default Value

flexMCExact (0)

See Also

VSFlexGrid Control (page 73)

MergeRow Property

Returns or sets whether a row will have its cells merged (see also the MergeCells property).

Syntax

[form!]VSFlexGrid.MergeRow(Row As Long)[= {True | False}]

MouseCol Property · 169

Remarks

The MergeRow property is used in conjunction with the MergeCells, MergeCol, and MergeCompare
properties to control whether and how cells are merged for display.

The MergeCells property is used to enable cell merging for the entire control. After setting it to an appropriate
value, the MergeRow and MergeCol properties are used to determine which rows and columns should have
their cells merged. By default, MergeRow and MergeCol are set to False, so no merging takes place. If you set
them to True for a specific row or column, then adjacent cells in that row or column will be merged if their
contents are equal. The rule used to compare cell contents is controlled by the MergeCompare property.

The Row parameter should be set to a value between zero and Rows - 1 to set MergeRow for a single row, or -
1 to set all rows.

You don't need to set MergeRow to True when MergeCells is set to flexMergeSpill (6).

For more details and examples, see the MergeCells property.

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

MouseCol Property

Returns the zero-based index of the column under the mouse pointer.

Syntax

val& = [form!]VSFlexGrid.MouseCol

Remarks

The MouseRow and MouseCol properties are useful when handling the BeforeMouseDown event, because it
is fired before the selection is updated. They are also useful when handling other mouse events that do not
change the selection, such as mouse moves while the left button is not pressed. Finally, they are also good for
detecting clicks on the fixed areas of the grid.

The code below will highlight the current column when the mouse is moved over a non-fixed cell.

Private Sub fg_MouseMove(Button As Integer, Shift As Integer, X As
Single, Y As Single)

 fg.Cell(flexcpBackColor, fg.FixedRows, fg.FixedCols, fg.Rows - 1,
fg.Cols - 1) = vbDefault
 If fg.MouseRow >= fg.FixedRows And fg.MouseCol >= fg.FixedCols
Then
 fg.Cell(flexcpBackColor, fg.FixedRows, fg.MouseCol, fg.Rows -
1, fg.MouseCol) = vbYellow
 End If
 End Sub

Typical uses for these properties include displaying help information or tooltips when the user moves the
mouse over a selection, and the implementation of manual drag-and-drop manipulation of OLE objects.

Note

MouseRow and MouseCol return -1 if they are invoked while the mouse is not over the control or is over the
empty area of the control.

170 · VSFlexGrid Control

Data Type

Long

See Also

VSFlexGrid Control (page 73)

MouseRow Property

Returns the zero-based index of the row under the mouse pointer.

Syntax

val& = [form!]VSFlexGrid.MouseRow

Remarks

The MouseRow and MouseCol properties are useful when handling the BeforeMouseDown event, because it
is fired before the selection is updated. They are also useful when handling other mouse events that do not
change the selection, such as mouse moves while the left button is not pressed. Finally, they are also good for
detecting clicks on the fixed areas of the grid.

The code below will highlight the current column when the mouse is moved over a non-fixed cell.

Private Sub fg_MouseMove(Button As Integer, Shift As Integer, X As
Single, Y As Single)

 fg.Cell(flexcpBackColor, fg.FixedRows, fg.FixedCols, fg.Rows -
1, fg.Cols - 1) = vbDefault
 If fg.MouseRow >= fg.FixedRows And fg.MouseCol >= fg.FixedCols
Then
 fg.Cell(flexcpBackColor, fg.FixedRows, fg.MouseCol, fg.Rows -
1, fg.MouseCol) = vbYellow
 End If
End Sub

Typical uses for these properties include displaying help information or tooltips when the user moves the
mouse over a selection, and the implementation of manual drag-and-drop manipulation of OLE objects.

Note

MouseRow and MouseCol return -1 if they are invoked while the mouse is not over the control or is over the
empty area of the control.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

MultiTotals Property

Returns or sets whether subtotals will be displayed in a single row when possible.

Syntax

[form!]VSFlexGrid.MultiTotals[= {True | False}]

Remarks

If you set the MultiTotals property to True, then subtotal rows created by the Subtotal method may contain
aggregate values for multiple columns. Otherwise, new subtotal rows are created for each aggregate value.

NodeClosedPicture Property · 171

The examples below show the difference:

 fg.MultiTotals = True
 fg.Subtotal flexSTClear
 fg.Subtotal flexSTSum, 1, 2, , vbRed, vbWhite, True
 fg.Subtotal flexSTSum, 1, 3, , vbRed, vbWhite, True

 fg.MultiTotals = False
 fg.Subtotal flexSTClear
 fg.Subtotal flexSTSum, 1, 2, , vbRed, vbWhite, True
 fg.Subtotal flexSTSum, 1, 3, , vbRed, vbWhite, True

Data Type

Boolean

Default Value

True

See Also

VSFlexGrid Control (page 73)

NodeClosedPicture Property

Returns or sets the picture to be used for closed outline nodes.

Syntax

[form!]VSFlexGrid.NodeClosedPicture[= Picture]

172 · VSFlexGrid Control

Remarks

If a custom picture is not provided, closed outline nodes are represented by a plus sign in a rectangle.

To customize the picture used to represent closed outline nodes, use the following line:

 fg.NodeClosedPicture = LoadPicture(App.Path & "close.ico")

Data Type

Picture

See Also

VSFlexGrid Control (page 73)

NodeOpenPicture Property

Returns or sets the picture to be used for open outline nodes.

Syntax

[form!]VSFlexGrid.NodeOpenPicture[= Picture]

Remarks

If a custom picture is not provided, closed outline nodes are represented by a minus sign in a rectangle.

To customize the picture used to represent open outline nodes, use the following line:

 fg.NodeOpenPicture = LoadPicture(App.Path & "open.ico")

Data Type

Picture

See Also

VSFlexGrid Control (page 73)

OLEDragMode Property

Returns or sets whether the control can act as an OLE drag source, either automatically or under program
control.

Syntax

[form!]VSFlexGrid.OLEDragMode[= OLEDragModeSettings]

Remarks

The settings for the OLEDragMode property are described below:

Constant Value Description

FlexOLEDragManual 0 When OLEDragMode is set to
flexOleDragManual, you must call the OLEDrag
method to start dragging, which then triggers the
OLEStartDrag event. A good place to call the
OLEDrag method is in response to the
BeforeMouseDown event.

OLEDropMode Property · 173

Constant Value Description

FlexOLEDragAutomatic 1 When OLEDragMode is set to
FlexOleDragAutomatic, the control fills a
DataObject object with the data it contains and
sets the effects parameter before initiating the
OLEStartDrag event when the user attempts to
drag out of the control. This gives you control
over the drag/drop operation and allows you to
intercede by adding or modifying the data that is
being dragged.

For an example of implementing OLE drag and drop with the VSFlexGrid control, see the OLE Drag and
Drop Demo.

Note

If the DragMode property is set to Automatic, the setting of OLEDragMode is ignored, because regular Visual
Basic drag-and-drop events take precedence.

Data Type

OLEDragModeSettings (Enumeration)

Default Value

flexOLEDragManual (0)

See Also

VSFlexGrid Control (page 73)

OLEDropMode Property

Returns or sets whether the control can act as an OLE drop target, either automatically or under program
control.

Syntax

[form!]VSFlexGrid.OLEDropMode[= OLEDropModeSettings]

Remarks

The effect of the settings for the OleDropMode property are described below:

Constant Value Description

flexOleDropNone 0 The control does not accept OLE drops and
displays the No Drop cursor.

flexOleDropManual 1 The target component triggers the OLE drop
events, allowing the programmer to handle the
OLE drop operation in code.

flexOleDropAutomatic 2 The control automatically accepts OLE drops if
the DataObject object contains data in string or
file formats.

174 · VSFlexGrid Control

For an example of implementing OLE drag and drop with the VSFlexGrid control, see the OLE Drag and
Drop Demo.

Data Type

OLEDropModeSettings (Enumeration)

Default Value

flexOLEDropNone (0)

See Also

VSFlexGrid Control (page 73)

OutlineBar Property

Returns or sets the type of outline bar that should be displayed.

Syntax

[form!]VSFlexGrid.OutlineBar[= OutlineBarSettings]

Remarks

This property determines whether the control should display an outline bar when it is used in outline mode.
The outline bar contains a tree similar to the one in Windows Explorer. It shows the outline's structure and has
buttons that can be used to collapse and expand parts of the outline.

The settings for the OutlineBar property are described below:

Constant Value Description

FlexOutlineBarNone 0 No outline bar.

FlexOutlineBarComplete 1 Complete outline tree plus button row on top.
(Buttons are only displayed if the OutlineBar
is on a fixed column).

FlexOutlineBarSimple 2 Complete outline tree, no buttons across the
top.

FlexOutlineBarSymbols 3 Outline symbols but no connecting lines.

FlexOutlineBarCompleteLeaf 4 Similar to flexOutlineBarComplete, but
empty nodes are displayed without symbols.

FlexOutlineBarSimpleLeaf 5 Similar to flexOutlineBarSimple, but empty
nodes are displayed without symbols.

FlexOutlineBarSymbolsLeaf 6 Similar to flexOutlineBarSymbols, but empty
nodes are displayed without symbols.

The following properties affect how each row is displayed on the OutlineBar:

Property Effect

If IsSubtotal is set to True and the row has children, the row is displayed as a node, with a collapse/expand
symbol.

OutlineCol Property · 175

If IsCollapsed is set to flexOutlineCollapsed, the row is displayed with a plus sign that the user can click to
expand the node. Otherwise, the row is displayed with a minus sign that the user can click to collapse the
node.

The RowOutlineLevel property controls the indentation of the node. Higher values cause the node to be more
indented.

The OutlineBar recognizes the following mouse actions: Clicking on a collapsed node (with a plus sign)
expands it. Clicking on an expanded node (with a minus sign) collapses it. Shift and shift-control clicking on a
branch expands or collapses the entire outline to the level of the branch that was clicked. The OutlineBar can
have a row of buttons across the top that allow the user to collapse the entire outline to a certain level.

By default, the outline bar is drawn on the first column of the control. You may display it in a different column
by setting the OutlineCol property. The color used to draw the outline tree is specified by the TreeColor
property.

When a node is collapsed or expanded, the control fires the BeforeCollapse and AfterCollapse events. You
may trap these events to prevent certain nodes from being collapsed or expanded, or to populate the outline
asynchronously. See the BeforeCollapse event for an example.

For more details on creating and using outlines, see the Outline Demo.

Data Type

OutlineBarSettings (Enumeration)

Default Value

flexOutlineBarNone (0)

See Also

VSFlexGrid Control (page 73)

OutlineCol Property

Returns or sets the column used to display the outline tree.

Syntax

[form!]VSFlexGrid.OutlineCol[= value As Long]

Remarks

The OutlineCol property works in conjunction with the OutlineBar property to control the appearance and
behavior of the outline tree.

By default, the OutlineCol property is set to zero, so the outline bar (if present) is displayed on the first
column of the control. You may use OutlineCol to place the outline tree in a different column. If you place
the outline tree in a column that contains data, the entries will be indented to accommodate the tree.

You should normally use the AutoSize method after setting this property, to ensure that the tree and data on
the OutlineCol column are fully visible.

Data Type

Long

Default Value

0

176 · VSFlexGrid Control

See Also

VSFlexGrid Control (page 73)

OwnerDraw Property

Returns or sets whether and when the control will fire the DrawCell event.

Syntax

[form!]VSFlexGrid.OwnerDraw[= OwnerDrawSettings]

Remarks

The OwnerDraw property allows the application to add custom graphics or text to cells. It determines
whether the control should fire the DrawCell event to allow the application to perform custom drawing.

The settings for the OwnerDraw property are described below:

Constant Value Description

FlexODNone 0 The control performs all drawing itself. The
DrawCell event does not get fired at all. (This is
the default setting.)

FlexODOver 1 The control draws the cell, and then fires the
DrawCell event so the application can add text or
graphics over the default cell contents.

FlexODContent 2 The control draws the cell background, Including
any pictures, but no text. It fires the DrawCell
event so the application can draw the text.

FlexODComplete 3 The control draws nothing at all in the cell. It fires
the DrawCell event and the application is
responsible for drawing the entire cell.

FlexODOverFixed 4 Similar to flexODOver, except only fixed cells are
owner-drawn.

FlexODContentFixed 5 Similar to flexODContent, except only fixed cells
are owner-drawn.

FlexODCompleteFixed 6 Similar to flexODComplete, except only fixed
cells are owner-drawn.

For more details, see the DrawCell event.

Data Type

OwnerDrawSettings (Enumeration)

Default Value

flexODNone (0)

See Also

VSFlexGrid Control (page 73)

Picture Property · 177

Picture Property

Returns a picture of the entire control.

Syntax

val% = [form!]VSFlexGrid.Picture

Remarks

This property returns a picture (bitmap) representation of the entire control, including rows and columns that
are not visible on the screen. If you have a control with 1000 rows, for example, the bitmap will include all of
them, and the picture will be huge. To create a picture of a part of the control, write a routine to hide all the
elements you don't want to show, get the picture, and then restore the control.

To reduce memory requirements for the bitmap and increase speed, you may consider setting the PictureType
property to flexPictureMonochrome. The picture will not look as nice, but it will require less memory.

The example below shows a routine that creates a picture of the current selection. It traps out-of-memory
errors and automatically switches to monochrome mode if required.

 Private Sub CopySelectionAsBitmap(fg As VSFlexGrid)

 ' save current settings
 Dim hl%, tr&, lc&, rd%
 hl = fg.HighLight
 tr = fg.TopRow
 lc = fg.LeftCol
 rd = fg.Redraw
 fg.HighLight = 0
 fg.Redraw = flexRDNone

 ' hide non-selected rows and columns
 Dim i&, r1&, c1&, r2&, c2&
 fg.GetSelection r1, c1, r2, c2
 For i = fg.FixedRows To fg.Rows - 1
 If i < r1 Or i > r2 Then fg.RowHidden(i) = True
 Next
 For i = fg.FixedCols To fg.Cols - 1
 If i < c1 Or i > c2 Then fg.ColHidden(i) = True
 Next

 ' scroll to top left corner
 fg.TopRow = fg.FixedRows
 fg.LeftCol = fg.FixedCols

 ' copy picture (with error-trapping)
 Clipboard.Clear
 On Error Resume Next
 fg.PictureType = flexPictureColor
 Clipboard.SetData fg.Picture
 If Error <> 0 Then
 fg.PictureType = flexPictureMonochrome
 Clipboard.SetData fg.Picture
 Endif

 ' restore control
 fg.RowHidden(-1) = False
 fg.ColHidden(-1) = False
 fg.TopRow = tr
 fg.LeftCol = lc
 fg.HighLight = hl
 fg.Redraw = rd
 End Sub

178 · VSFlexGrid Control

Data Type

Picture

See Also

VSFlexGrid Control (page 73)

PicturesOver Property

Returns or sets whether text and pictures should be overlaid in cells.

Syntax

[form!]VSFlexGrid.PicturesOver[= {True | False}]

Remarks

If PicturesOver is set to True, pictures and text overlap within cells. This setting is useful for displaying
pictures that look like button frames or other elements on which text should be overlaid.

If PicturesOver is set to False, pictures are drawn next to the text. This setting is useful for displaying icons
next to text.

Data Type

Boolean

Default Value

False

See Also

VSFlexGrid Control (page 73)

PictureType Property

Returns or sets the type of picture returned by the Picture property.

Syntax

[form!]VSFlexGrid.PictureType[= PictureTypeSettings]

Remarks

The effect of the settings for the PictureType property are described below:

The settings for the PictureType property are described below:

Constant Value Description

FlexPictureColor 0 Causes the Picture property to generate a color
bitmap of the control. This mode creates high
quality pictures, but they may be quite large
and slow to manipulate.

FlexPictureMonochrome 1 Causes the Picture property to generate a
monochrome bitmap of the control. This mode
creates lower quality pictures which consume
less memory and are faster to manipulate.

flexPictureEnhMetafile 2 Please provide description.

Redraw Property · 179

For more details and sample code, see the Picture property.

Data Type

PictureTypeSettings (Enumeration)

See Also

VSFlexGrid Control (page 73)

Redraw Property

Enables or disables redrawing of the VSFlexGrid control.

Syntax

[form!]VSFlexGrid.Redraw[= RedrawSettings]

Remarks

The settings for the Redraw property are described below:

Constant Value Description

FlexRDNone 0 The grid does not repaint itself.

FlexRDDirect 1 The grid paints its contents directly on the screen.
This is the fastest repaint mode, but there occasionally
it may cause a little flicker.

FlexRDBuffered 2 The grid paints its contents on an off-screen buffer, then
transfers the complete image to the screen. This mode
is slightly slower than flexRDDirect, but it eliminates
flicker.

True -1 Equivalent to flexRDDirect. This setting is allowed for
compatibility with previous versions of the control.

The Redraw property is used in one of the main optimizations available to VSFlexGrid users. Before making
extensive changes to the grid, set the Redraw property to flexRDNone to suspend repainting until you are
done with the changes. Then restore Redraw to its previous setting. Doing this will reduce flicker and increase
speed. This optimization is especially effective when adding large numbers of rows to the grid, because the
control needs to recalculate the scroll ranges each time a row is added.

For example, the code below turns repainting off, changes to the contents of the control, and then turns
repainting back on to show the results.

Sub UpdateGrid()
 fa.Redraw = flexRDNone ' suspend redrawing/avoid flicker
 fg.Rows = 1
 Dim i As Long
 For i = 1 To 10000
 fg.AddItem "Row " & i
 Next
 fg.Redraw = True ' resume redrawing
End Sub

Data Type

RedrawSettings (Enumeration)

180 · VSFlexGrid Control

Default Value

flexRDDirect (1)

See Also

VSFlexGrid Control (page 73)

RightCol Property

Returns the zero-based index of the last column displayed in the control.

Syntax

val& = [form!]VSFlexGrid.RightCol

Remarks

The right column returned may be only partially visible.

You cannot set this property. To scroll the contents of the control set the TopRow and LeftCol properties
instead. To ensure that a cell is visible, use the ShowCell method.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

RightToLeft Property

Returns or sets whether text should be displayed from right to left on Hebrew and Arabic systems.

Syntax

[form!]VSFlexGrid.RightToLeft [= {True | False}]

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

Row Property

Returns or sets the zero-based index of the current row.

Syntax

[form!]VSFlexGrid.Row[= value As Long]

Remarks

Use the Row and Col properties to make a cell current or to find out which row or column contains the
current cell. Columns and rows are numbered from zero, beginning at the top for rows and at the left for
columns.

The Row property may be set to -1 to hide the selection, to a value between zero and FixedRows - 1 to select a
cell in a fixed row, or to a value between FixedRows and Rows - 1 to select a cell in a scrollable row. Setting
Row to other values will trigger an Invalid Index error.

RowData Property · 181

Setting the Row and Col properties automatically resets RowSel and ColSel, so the selection becomes the
current cell. Therefore, to specify a block selection, you must set Row and Col first, then set RowSel and
ColSel. Alternatively, you may use the Select method to do it all with a single statement.

Setting the Row and Col properties does not ensure that the current cell is visible. To do that, use the
ShowCell method.

Note that the Row and Col properties are not the same as the Rows and Cols properties.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

RowData Property

Returns or sets a user-defined variant associated with the given row.

Syntax

[form!]VSFlexGrid.RowData(Row As Long)[= value As Variant]

Remarks

The RowData and ColData properties allow you to associate values with each row or column on the control.
You may also associate values to individual cells using the Cell(flexcpData) property.

A typical use for these properties is to keep indices into an array of data structures associated with each row, or
pointers to objects represented by the data in the row or column. The values assigned will remain current even
if you sort the control or move its columns.

Because these properties hold Variants, you have extreme flexibility in the types of information you may
associate with each row, column or cell. The example below shows some ways in which you can use the
RowData property:

 Dim coll As New Collection
 coll.Add "Hello"
 coll.Add "World"

 fg.RowData(1) = 212 ' store a number
 fg.RowData(2) = "Hello" ' store a string
 fg.RowData(3) = coll ' store a pointer to an object
 fg.RowData(4) = Me ' store a pointer to a form
 Debug.Print TypeName(fg.RowData(1)), fg.RowData(1)
 Debug.Print TypeName(fg.RowData(2)), fg.RowData(2)
 Debug.Print TypeName(fg.RowData(3)), fg.RowData(3).Item(2)
 Debug.Print TypeName(fg.RowData(4)), fg.RowData(4).Caption

This code produces the following output:

Integer 212
String Hello
Collection World
Form1 Form1

You can search for rows that contain specific RowData values using the FindRow property.

Data Type

Variant

182 · VSFlexGrid Control

See Also

VSFlexGrid Control (page 73)

RowHeight Property

Returns or sets the height of the specified row in twips.

Syntax

[form!]VSFlexGrid.RowHeight(Row As Long)[= value As Long]

Remarks

Use this property to set the height of a row at runtime. To set height limits for all rows, use the
RowHeightMin and RowHeightMax properties.

If the Row parameter is -1, then the specified height is applied to all rows.

If you set RowHeight to -1, the row height is reset to its default value, which depends on the size of the
control's current font. If you set RowHeight to zero, the column becomes invisible. If you want to hide a row,
however, consider using the RowHidden property instead. This allows you to make the row visible again with
the same height it had before it was hidden.

To set row heights automatically, based on the contents of the control, set the AutoSizeMode property to
flexAutoSizeRowHeight (1) and call the AutoSize method.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

RowHeightMax Property

Returns or sets the maximum row height, in twips.

Syntax

[form!]VSFlexGrid.RowHeightMax[= value As Long]

Remarks

Set this property to a non-zero value to set a maximum limit to row heights. This is often useful when you use
the AutoSize method to automatically set row heights, to prevent some rows from becoming too large.

See also the ColWidthMin, ColWidthMax, and RowHeightMin properties.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

RowHeightMin Property

Returns or sets the minimum row height, in twips.

RowHidden Property · 183

Syntax

[form!]VSFlexGrid.RowHeightMin[= value As Long]

Remarks

Set this property to a non-zero value to set a minimum limit to row heights. This is often useful when you use
the AutoSize method to automatically set row heights, to prevent some rows from becoming too short. This
may also be useful when you want to use small fonts, but don't want the rows to become short.

See also the ColWidthMin, ColWidthMax, and RowHeightMax properties.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

RowHidden Property

Returns or sets whether a row is hidden.

Syntax

[form!]VSFlexGrid.RowHidden(Row As Long)[= {True | False}]

Remarks

Use the RowHidden property to hide and display rows. This is a better approach than setting the row's
RowHeight property to zero, it allows you to display the row later with its original height.

When the control collapses or expands an outline branch, either as a result of user mouse action or
programmatically (see the Outline method and IsCollapsed property), it sets the RowHidden property
accordingly.

Hidden rows are ignored by the AutoSize method.

When setting this property, the Row parameter should be set to a value between zero and Rows - 1 to hide or
show a given row, or to -1 to hide or show all rows.

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

RowIsVisible Property

Returns whether a given row is currently within view.

Syntax

val% = [form!]VSFlexGrid.RowIsVisible(Row As Long)

Remarks

The ColIsVisible and RowIsVisible properties are used to determine whether the specified column or row is
within the visible area of the control or whether it has been scrolled off the visible part of the control.

If a row has zero height or is hidden but is within the scrollable area, RowIsVisible will return True.

184 · VSFlexGrid Control

To ensure a given row is visible, use the ShowCell method.

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

RowOutlineLevel Property

Returns or sets the outline level for a subtotal row.

Syntax

[form!]VSFlexGrid.RowOutlineLevel(Row As Long)[= value As Integer]

Remarks

The RowOutlineLevel property is used for two closely related purposes.

1. When using the grid in outline mode, RowOutlineLevel is used to set the hierarchical level of a node.
Nodes with high outline level are children of rows with low outline level. The root node has the
lowest outline level. You may change the relationship between nodes by modifying the value of the
RowOutlineLevel property. For more details on creating and using outlines, see the Outline Demo.

2. When using the Subtotal method to create subtotals automatically, RowOutlineLevel stores the
number of the column being used for grouping the data. For more details on creating and using
automatic subtotals, see the Subtotal method.

The RowOutlineLevel is only used by the control if the IsSubtotal property is set to True.

Data Type

Integer

See Also

VSFlexGrid Control (page 73)

RowPos Property

Returns the top (y) coordinate of a row relative to the edge of the control, in twips.

Syntax

val& = [form!]VSFlexGrid.RowPos(Row As Long)

Remarks

This property is similar to the CellTop property, except RowPos applies to an arbitrary row and will not cause
the control to scroll. The CellTop property applies to the current selection and reading it will make the current
cell visible, scrolling the contents of the control if necessary.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

RowPosition Property · 185

RowPosition Property

Moves a given row to a new position.

Syntax

[form!]vsFlexGrid.RowPosition(Row As Long)[= NewPosition As Long]

Remarks

The Row and NewPosition parameters must be valid row indices (in the range 0 to Rows - 1), or an error will be
generated.

When a column or row is moved with ColPosition or RowPosition, all formatting information moves with it,
including width, height, alignment, colors, fonts, etc. To move text only, use the Clip property instead.

See the ColPosition property for an example.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

Rows Property

Returns or sets the total number of rows in the control.

Syntax

[form!]VSFlexGrid.Rows[= value As Long]

Remarks

Use the Rows and Cols properties to get the dimensions of the control or to resize the control dynamically at
runtime.

The minimum number of rows and columns is 0. The maximum number is limited by the memory available
on your computer. If the control runs out of memory while trying to add rows, columns, or cell contents, it
will cause a run time error. To make sure your code works properly when dealing with large controls, you
should add error-handling code to your programs.

If you increase the value of the Rows property, new rows are appended to the bottom of the grid. To insert
rows at specific positions, use the AddItem method. If you decrease the value of the Rows property, the
bottom rows are removed from the control. To remove rows at specific positions, use the RemoveItem
method.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

RowSel Property

Returns or sets the extent of a range of rows.

Syntax

[form!]VSFlexGrid.RowSel[= value As Long]

186 · VSFlexGrid Control

Remarks

Use the RowSel and ColSel properties to modify a selection or to determine which cells are currently selected.
Rows and columns are numbered from zero, beginning at the top for rows and at the left for columns.

Setting the Row and Col properties automatically resets RowSel and ColSel, so the selection becomes the
current cell. Therefore, to specify a block selection, you must set Row and Col first, then set RowSel and
ColSel. Alternatively, you may use the Select method to do it all with a single statement.

If the SelectionMode property is set to flexSelectionListBox (3), you should use the IsSelected property to select
and deselect rows.

Note that when a range is selected, the value of Row may be greater than or less than RowSel, and Col may
be greater than or less than ColSel. This is inconvenient when you need to set up bounds for loops. In these
cases, use the GetSelection method to retrieve selection in an ordered fashion.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

RowStatus Property

Returns or sets a value that indicates whether a row has been added, deleted, or modified.

Syntax

[form!]VSFlexGrid.RowStatus(Row As Long)[= RowStatusSettings]

Remarks

The RowStatus property is set by the control to reflect the status of the row. This allows you to determine
whether a row has just been created, whether it was modified by the program itself, or whether it was edited by
the user.

The control automatically assigns the following values to each row:

Constant Value Description

flexrsNew 0 When the row is created.

flexrsUpdated 1 When the program modifies a row by writing to it.

flexrsModified 2 When the user modifies a row by editing it.

flexrsDeleted 3 Not assigned by the control, but used as a return value if
you request the status of a row that does not exist (e.g.
RowStatus(-1)).

Each new action updates the row status and replaces the previous value. For example, if you create a new
instance of the control, all rows will have RowStatus set to flexrsNew (0). If you then assign values to one of the
rows, its status will become flexrsUpdated (1). If the user then edits one or more values on this row, the status
becomes flexrsModified (2).

The RowStatus property is read/write, so you may define and assign your own constants to it. If you do so,
define your own enumeration and use values above 100 to avoid conflict with the control-defined constants
and future values that may be added in future releases of the control.

ScrollBars Property · 187

Data Type

RowStatusSettings (Enumeration)

See Also

VSFlexGrid Control (page 73)

ScrollBars Property

Returns or sets whether the control will display horizontal or vertical scroll bars.

Syntax

[form!]VSFlexGrid.ScrollBars[= ScrollBarsSettings]

Remarks

The settings for the ScrollBars property are described below:

Constant Value Description

FlexScrollBarNone 0 Do not display any scrollbars.

FlexScrollBarHorizontal 1 Display a horizontal scrollbar.

FlexScrollBarVertical 2 Display a vertical scrollbar.

FlexScrollBarBoth 3 Display horizontal and vertical scrollbars.

Scroll bars are displayed only if the contents of the control extend beyond its borders. For example, if
ScrollBars is set to flexScrollBarHorizontal, a horizontal scroll bar is displayed only if the control is not wide
enough to display all columns at once.

If the control has no scroll bars in a direction, it will not allow any scrolling in that direction, even if the user
uses the keyboard to select a cell that is outside the visible area of the control. However, you may still scroll the
control through code by setting the TopRow and LeftCol properties.

Data Type

ScrollBarsSettings (Enumeration)

Default Value

flexScrollBarBoth (3)

See Also

VSFlexGrid Control (page 73)

ScrollTips Property

Returns or sets whether tool tips are shown while the user scrolls vertically.

Syntax

[form!]VSFlexGrid.ScrollTips[= {True | False}]

Remarks

Use the ScrollTips property to display a tooltip over the vertical scrollbar as the user moves the scroll thumb.
This allows the user to see which row will become visible when he releases the scroll thumb. This feature

188 · VSFlexGrid Control

makes it easy for users to browse and find specific rows on large data sets. This feature is especially useful if
the ScrollTrack property is set to False, because then the control will not scroll until the thumb track is
released.

To implement this feature in your programs, you must do two things:

1. Set the ScrollTips property to True

2. Respond to the BeforeScrollTip event by setting the ScrollTipText property to text that describes the
given row.

For example:

 Private Sub Form_Load()
 fg.ScrollTrack = False
 fg.ScrollTips = True
 End Sub
 Private Sub fg_BeforeScrollTip(ByVal Row As Long)
 ' the ScrollTip will show a string such as
 ' "Row 5: Accounts Receivable"
 fg.ScrollTipText = " Row " & Row & ": " & fg.TextMatrix(Row, 0)
& " "
 End Sub

Note that you may also implement regular tooltips in Visual Basic by trapping the MouseMove event and
setting the ToolTipText property.

Data Type

Boolean

Default Value

False

See Also

VSFlexGrid Control (page 73)

ScrollTipText Property

Returns or sets the tool tip text shown while the user scrolls vertically.

Syntax

[form!]VSFlexGrid.ScrollTipText[= value As String]

Remarks

Set this property in response to the BeforeScrollTip event to display information describing a given row as the
user scrolls the contents of the control.

For more details, see the ScrollTips property.

Data Type

String

See Also

VSFlexGrid Control (page 73)

ScrollTrack Property

Returns or sets scrolling should occur while the user moves the scroll thumb.

SelectedRow Property · 189

Syntax

[form!]VSFlexGrid.ScrollTrack[= {True | False}]

Remarks

This property is usually set to False to avoid excessive scrolling and flickering. Set it to True if you want to
emulate other controls that have this behavior. The example below scrolls the grid without waiting for the
thumb to be released:

 fg.ScrollTrack = True

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

SelectedRow Property

Returns the position of a selected row when SelectionMode is set to flexSelectionListBox.

Syntax

[form!]VSFlexGrid.SelectedRow(Index As Long)[= value As Long]

Remarks

This property works in conjunction with the SelectedRows property to enumerate all selected rows in the
control. These properties are especially useful when the SelectionMode property is set to flexSelectionListBox
(3), which allows the user to select multiple, non-adjacent rows.

Using the SelectedRows and SelectedRow properties to enumerate all selected rows is equivalent to, but faster
than scanning the entire control for selected rows by reading the IsSelected property.

For example,

 For i = 0 to fg.SelectedRows – 1
 Debug.Print "Row "; fg.SelectedRow(i); " is selected"
 Next

is faster than

 For i = 0 to fg.Rows
 If fg.IsSelected(i) Then Debug.Print "Row "; i; " is selected"
 Next

Data Type

Long

See Also

VSFlexGrid Control (page 73)

SelectedRows Property

Returns the number of selected rows when SelectionMode is set to flexSelectionListBox.

Syntax

val& = [form!]VSFlexGrid.SelectedRows

190 · VSFlexGrid Control

Remarks

This property works in conjunction with the SelectedRow property to enumerate all selected rows in the
control. These properties are especially useful when the SelectionMode property is set to flexSelectionListBox
(3), which allows the user to select multiple, non-adjacent rows.

The code below prints the number of selected rows to the debug window when the selection changes:

 Private Sub Form_Load()
 fg.SelectionMode = flexSelectionListBox
 End Sub
 Private Sub fg_SelChange()
 Debug.Print fg.SelectedRows
 End Sub

Using the SelectedRows and SelectedRow properties to enumerate all selected rows is equivalent to, but faster
than scanning the entire control for selected rows by reading the IsSelected property.

For an example, see the SelectedRows property.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

SelectionMode Property

Returns or sets whether the control will select cells in a free range, by row, by column, or like a listbox.

Syntax

[form!]VSFlexGrid.SelectionMode[= SelModeSettings]

Remarks

The settings for the SelectionMode property are described below:

Constant Value Description

flexSelectionFree 0 Allows selections to be made as usual,
spreadsheet-style.

flexSelectionByRow 1 Forces selections to span entire rows. Useful for
implementing record-based displays.

flexSelectionByColumn 2 Forces selections to span entire columns. Useful
for selecting ranges for a chart or fields for
sorting.

flexSelectionListBox 3 Similar to flexSelectionByRow, but allows non-
continuous selections. CTRL-clicking with the
mouse toggles the selection for an individual
row. Dragging the mouse over a group of rows
toggles their selected state.

When SelectionMode is set to flexSelectionListBox, you may use the IsSelected property allows you to read
and set the selected status of individual rows, and the SelectedRows property to enumerate selected rows.

SheetBorder Property · 191

For example:

 Private Sub fg_Click()

 If fg.MouseRow < fg.FixedRows And fg.MouseCol > -fg.FixedCols Then
 fg.SelectionMode = flexSelectionByColumn
 End If

 If fg.MouseCol < fg.FixedRows And fg.MouseRow >= fg.FixedRows Then
 fg.SelectionMode = flexSelectionByRow
 End If

 End Sub

To prevent range selection altogether, set the AllowSelection property to False.

Data Type

SelModeSettings (Enumeration)

Default Value

flexSelectionFree (0)

See Also

VSFlexGrid Control (page 73)

SheetBorder Property

Returns or sets the color used to draw the border around the sheet.

Syntax

[form!]VSFlexGrid.SheetBorder[= colorref&]

Remarks

This property is useful if you want to make a grid look like a page, with no border around the cells. To do this,
set the SheetBorder and BackColorBkg properties to the same color as the grid background (BackColor
property).

Data Type

Color

See Also

VSFlexGrid Control (page 73)

ShowComboButton Property

Returns or sets whether drop-down buttons are shown when editable cells are selected.

Syntax

[form!]VSFlexGrid.ShowComboButton[= ShowButtonSettings]

Remarks

The ShowComboButton property allows you to set whether drop-down buttons are shown when editable cells
are selected. To use the ShowComboButton property the cell must have values listed in an associated
ComboList.

192 · VSFlexGrid Control

The settings for the ShowComboButton property are described below:

Constant Value Description

flexSBEditing 0 The user may initiate the drop-down button by typing
into the current cell or by double-clicking it with the
mouse

flexSBFocus 1 The user may initiate the drop-down button by
clicking the current cell with the mouse.

flexSBAlways 2 The control displays drop-down buttons
automatically.

Note that the user may edit the cells directly, by clicking the button with the mouse when the Editable
property is set to flexEDKbdMouse. If the Editable property is set to flexEDNone, then the cell contents cannot be
edited by the user.

The following code prepares the grid to show a button for the combo list as soon as a cell is selected:

 With fg
 .Editable = flexEDKbdMouse
 .ComboList = "Item 1|Item 2|Item 3"
 .ShowComboButton = flexSBFocus
 End With

Data Type

ShowButtonSettings (Enumeration)

Default Value

flexSBFocus

See Also

VSFlexGrid Control (page 73)

Sort Property

Sets a sorting order for the selected rows using the selected columns as keys.

Syntax

[form!]VSFlexGrid.Sort = SortSettings

Remarks

The Sort property allows you to sort a range or rows in ascending or descending order based on the values in
one or more columns.

The range of rows to be sorted is specified by setting the Row and RowSel properties. If Row and RowSel are
the same, the control sorts all non-fixed rows.

They keys used for sorting are determined by the Col and ColSel properties, always from the left to the right.
For example, if Col = 3 and ColSel = 1, the sort would be done according to the contents of columns 1, then 2,
then 3.

The sorting algorithm used by the VSFlexGrid control is "stable": this means that the sorting keeps the relative
order of records when the sorting key is the same. For example, if you sort a list of files by name, then by
extension, file names will still be sorted within each extension group.

Sort Property · 193

Valid settings for the Sort property are described below:

Constant Value Description

flexSortNone 0 Ignore this column when sorting. This
setting is useful when you assign it to a
column's Cols property, then set Sort
to flexSortUseColSort.

flexSortGenericAscending 1 Sort strings and numbers in ascending
order.

flexSortGenericDescending 2 Sort strings and numbers in
descending order.

flexSortNumericAscending 3 Sort numbers in ascending order.

flexSortNumericDescending 4 Sort numbers in descending order.

flexSortStringNoCaseAscending 5 Sort strings in ascending order,
ignoring capitalization.

flexSortStringNoCaseDescending 6 Sort strings in descending order,
ignoring capitalization.

flexSortStringAscending 7 Sort strings in ascending order.

FlexSortStringDescending 8 Sort strings in descending order.

flexSortCustom 9 Fire a Compare event and use the
return value to sort the columns.

flexSortUseColSort 10 This setting allows you to use different
settings for each column, as
determined by the ColSort property.
Using this setting, you may sort some
columns in ascending and others in
descending order.

The flexSortCustom is the most flexible setting. It fires a Compare event that allows you to compare rows in any
way you wish, using any columns in any order. However, it is also much slower than the others, so it should
be used only when really necessary or when the grid has only a few rows. If you want to sort based on
arbitrary criteria (for example, "Urgent", "High", "Medium", "Low"), consider using a hidden column with
numerical values that correspond to the criteria you are using.

To sort dates, make sure the column containing the dates has its ColDataType property set to flexDTDate (7).
This will allow the control to sort them properly. For example:

 fg.ColDataType(i) = flexDTDate
 fg.Col = i
 fg.Sort = flexSortGenericAscending

The example below shows how the Sort property is used:

 ' fill control with random data
 fg.Cols = 2
 fg.FixedCols = 0
 FillColumn fg, 0, "Name|Andrew|John|Paul|Mary|Tom|Dick|Harry"
 FillColumn fg, 1, "Number|12|32|45|2|65|8|87|34"

194 · VSFlexGrid Control

 ' sort by name
 fg.Select 1, 0
 fg.Sort = flexSortGenericAscending

 ' sort by name and number
 fg.Select 1, 0, 1, 1
 fg.Sort = flexSortGenericAscending

If you want to select different sorting orders for each column, either sort them one by one or use the ColSort
property and the flexSortUseColSort setting. Here is an example that sorts the names in ascending order and the
numbers in descending order:

 fg.ColSort(0)=flexSortGenericAscending
 fg.ColSort(1) = flexSortGenericDescending
 fg.Select 1, 0, 1, 1
 fg.Sort = flexSortUseColSort

SortAscendingPicture Property · 195

Data Type

SortSettings (Enumeration)

Note

The Sort property honors outline structures. It will only sort data rows, and will not scramble nodes.

See Also

VSFlexGrid Control (page 73)

SortAscendingPicture Property

Gets or sets a custom image to indicate the column sort direction.

Syntax

Property SortAscendingPicture As IPictureDisp

Data Type

IPictureDisp

See Also

VSFlexGrid Control (page 73)

SortDescendingPicture Property

Gets or sets a custom image to indicate the column sort direction.

Syntax

Property SortDescendingPicture As IPictureDisp

Data Type

IPictureDisp

See Also

VSFlexGrid Control (page 73)

SubtotalPosition Property

Returns or sets whether subtotals should be inserted above or below the totaled data.

Syntax

[form!]VSFlexGrid.SubtotalPosition[= SubtotalPositionSettings]

196 · VSFlexGrid Control

Remarks

The settings for the SubtotalPosition property are described below:

Constant Value Description

flexSTBelow 0 Subtotals are inserted below the data. This setting creates
grids that look like reports.

flexSTAbove 1 Subtotals are inserted above the data. This setting creates
grids that look like outline trees (this is the default value).

The SubtotalPosition property affects the placement of subtotals added using the Subtotal method and also
the appearance and behavior of the OutlineBar. When SubtotalPosition is set to flexSTAbove, parent nodes
appear at the top of the grid, like a standard tree control. When SubtotalPosition is set to flexSTBelow, parent
nodes appear at the bottom of the grid, giving the tree an upside-down appearance.

The example below shows how to insert a subtotal positioned below the calculated values:

 Private Sub Form_Load()
 fg.rows=3
 fg.TextMatrix(1, 1)="Rent": fg.TextMatrix(1, 2)="234"
 fg.TextMatrix(2, 1)="Rent": fg.TextMatrix(2, 2)="335"
 fg.SubtotalPosition = flexSTBelow
 fg.Subtotal flexSTSum, 1, 2
 End Sub

Data Type

SubtotalPositionSettings (Enumeration)

Default Value

flexSTAbove (1)

See Also

VSFlexGrid Control (page 73)

TabBehavior Property

Returns or sets whether the TAB key will move focus between controls (VB default) or between grid cells.

Syntax

[form!]VSFlexGrid.TabBehavior[= TabBehaviorSettings]

Remarks

The settings for the TabBehavior property are described below:

Constant Value Description

flexTabControls 0 TAB key is used to move to the next or previous control on
the form.

flexTabCells 1 TAB key is used to move to the next or previous cell on the
control.

Text Property (VSFlexGrid) · 197

The example below sets the TAB key to move to the next control when in the last cell of the grid:

Private Sub fg_GotFocus()

 fg.Select fg.FixedRows, fg.FixedCols
End Sub

Private Sub fg_EnterCell()

 If fg.Col = fg.Cols - 1 And fg.Row = fg.Rows - 1 Then
 fg.TabBehavior = flexTabControls
 Else
 fg.TabBehavior = flexTabCells
 End If
End Sub

Data Type

TabBehaviorSettings (Enumeration)

Default Value

flexTabControls (0)

See Also

VSFlexGrid Control (page 73)

Text Property (VSFlexGrid)

Returns or sets the contents of the selected cell or range.

Syntax

[form!]VSFlexGrid.Text[= value As String]

Remarks

The Text property retrieves the contents of the current cell, defined by the Row and Col properties. When a
string is assigned to the Text property, is applied either to the current cell or copied over the current selection,
depending on the settings of the FillStyle property.

The code below sets the contents of the fourth column of the fourth row to Apple:

 fg.Select 3, 3
 fg.Text = "Apple"

To read or set the contents of an arbitrary cell, use the Cell(flexcpText) or TextMatrix properties. To read the
formatted contents of a cell using the Cell(flexcpTextDisplay) property. To read the numeric value of a cell, use
the Cell(flexcpValue), Value, or ValueMatrix properties.

Data Type

String

See Also

VSFlexGrid Control (page 73)

TextArray Property

Returns or sets the contents of a cell identified by a single index.

Syntax

[form!]VSFlexGrid.TextArray(Index As Long)[= value As String]

198 · VSFlexGrid Control

Remarks

This property is provided for backward compatibility with earlier versions of this control. New applications
should use the Cell(flexcpText) or TextMatrix properties.

The following code places the text "Apple" in the second row and second column of a five column grid:

 fg.TextArray(6) = "Apple"

Data Type

String

See Also

VSFlexGrid Control (page 73)

TextMatrix Property

Returns or sets the contents of a cell identified by its row and column coordinates.

Syntax

[form!]VSFlexGrid.TextMatrix(Row As Long, Col As Long)[= value As String]

Remarks

The TextMatrix property allows you to set or retrieve the contents of a cell without changing the Row
property and Col property.

The following code places text into an arbitrary cell:

 fg.TextMatrix(1, 1) = "Apple"

See also the Cell property, which allows you to set or retrieve text, pictures and formatting information for a
cell or range of cells.

Data Type

String

See Also

VSFlexGrid Control (page 73)

TextStyle Property

Returns or sets 3D effects for displaying text in non-fixed cells.

Syntax

[form!]VSFlexGrid.TextStyle[= TextStyleSettings]

Remarks

The settings for the TextStyle property are described below:

Constant Value Description

flexTextFlat 0 Draw text normally.

flexTextRaised 1 Draw text with a strong raised 3-D effect.

flexTextInset 2 Draw text with a strong inset 3-D effect.

TextStyleFixed Property · 199

Constant Value Description

flexTextRaisedLight 3 Draw text with a light raised 3-D effect.

flexTextInsetLight 4 Draw text with a light inset 3-D effect.

Constants flexTextRaised and flexTextInset work best for large and bold fonts. Constants flexTextRaisedLight and
flexTextInsetLight work best for small regular fonts.

The example below prints text with an inset 3-D effect in non-fixed cells:

 fg.TextStyle = flexTextInset

You may set the text style for the fixed cell using the TextStyleFixed property, or set the text style for
individual cells and ranges using the Cell(flexcpTextStyle) property.

Data Type

TextStyleSettings (Enumeration)

Default Value

flexTextFlat (0)

See Also

VSFlexGrid Control (page 73)

TextStyleFixed Property

Returns or sets 3D effects for displaying text in fixed cells.

Syntax

[form!]VSFlexGrid.TextStyleFixed[= TextStyleSettings]

Remarks

Valid settings for this property are the same as those for the TextStyle property.

The example below prints text with a raised 3-D effect in fixed cells:

 fg.TextStyleFixed = flexTextRaised

Data Type

TextStyleSettings (Enumeration)

Default Value

flexTextFlat (0)

See Also

VSFlexGrid Control (page 73)

TopRow Property

Returns or sets the zero-based index of the topmost non-fixed row displayed in the control.

Syntax

[form!]VSFlexGrid.TopRow[= value As Long]

200 · VSFlexGrid Control

Remarks

Setting the TopRow property causes the control to scroll through its contents vertically so that the given row
becomes the top visible row. This is often useful when you want to synchronize two or more controls so that
when one of them scrolls, the other scrolls as well.

The following code selects an arbitrary row and makes it the topmost row displayed in the grid:

 Private Sub Command1_Click()
 fg.SelectionMode = flexSelectionListBox
 fg.IsSelected(5) = True
 fg.TopRow = 5
 End Sub

To scroll horizontally, use the LeftCol property.

When setting this property, the largest possible row number is the total number of rows minus the number of
rows that will fit the display. Attempting to set TopRow to a greater value will cause the control to set it to the
largest possible value (no error will occur).

To ensure that a given cell is visible, use the ShowCell method instead.

Data Type

Long

See Also

VSFlexGrid Control (page 73)

TreeColor Property

Returns or sets the color used to draw the outline tree.

Syntax

[form!]VSFlexGrid.TreeColor[= colorref&]

Remarks

The outline tree is drawn only when the OutlineBar property is set to a non-zero value and the control
contains subtotal rows. It allows users to collapse and expand the outline.

For details on outlines and an example, see the Outline method.

Data Type

Color

See Also

VSFlexGrid Control (page 73)

Value Property

Returns the numeric value of the current cell.

Syntax

val# = [form!]VSFlexGrid.Value

Remarks

This property is similar to Visual Basic's Val function, except it interprets localized thousand separators,
currency signs, and parenthesized negative values.

ValueMatrix Property · 201

For example, if the current cell contains the string "$(1,234.56)", the Value property will return the value -
1234.56. The following code outputs the value of the current cell to the debug window:

 Private Sub Command1_Click()
 Debug.Print fg.Value
 End Sub

To retrieve the value of an arbitrary cell without selecting it first, use the Cell(flexcpValue) or the ValueMatrix
properties.

Note

This property is not an expression evaluator. If the current cell contains the string "2+2", for example, the
Value property will return 2 instead of 4. The Visual Basic statement Val("2+2") also returns 2.

Data Type

Double

See Also

VSFlexGrid Control (page 73)

ValueMatrix Property

Returns the numeric value of a cell identified by its row and column coordinates.

Syntax

val# = [form!]VSFlexGrid.ValueMatrix(Row As Long, Col As Long)

Remarks

This property is similar to the Value property, except it allows you to specify the cell whose value is to be
retrieved.

The following code outputs the value of an arbitrary cell to the debug window:

 Debug.Print fg.ValueMatrix(1, 1)

Data Type

Double

See Also

VSFlexGrid Control (page 73)

Version Property (VSFlexGrid)

Returns the version of the control currently loaded in memory.

Syntax

val% = [form!]VSFlexGrid.Version

Remarks

You may want to check this value at the Form_Load event, to make sure the version that is executing is at
least as current as the version used to develop your application.

The version number is a three-digit integer where the first digit represents the major version number and the
last two represent the minor version number. For example, version 7.00 returns 700.

202 · VSFlexGrid Control

The example below displays the version number of the control:

Private Sub Command1_Click()
 MsgBox "VSFlexGrid Version " & fg.Version, vbOKOnly

End Sub

Note

If you want your application to run correctly with older builds of VSFlex8, check the Version property before
using these new features. For example:

if fg.Version >= 801 then fg.Copy

Data Type

Integer

See Also

VSFlexGrid Control (page 73)

VirtualData Property

Returns or sets whether all data is fetched from the data source at once or as needed.

Syntax

[form!]VSFlexGrid.VirtualData[= {True | False}]

Remarks

The VirtualData property is relevant only when the grid is bound to a recordset.

If VirtualData is set to True, data is retrieved from the data source only when it is needed (for displaying or
reading its value, for example). This saves time and memory because the data is retrieved from the recordset in
small chunks, so the control is never tied up reading large amounts of data that are not immediately needed.

The example below configures binding so that data is retrieved from the data source only when it is needed:

 Private Sub Form_Load()
 fg.VirtualData = True
 fg.DataMode = flexDMBound
 fg.DataSource = Data1.Recordset

 End Sub

If VirtualData is set to False, the entire dataset is read from the data source into memory, all at once. This
process may be slow, especially if the data source is large (over about 5,000 records).

See also the DataSource and DataMode properties.

Data Type

Boolean

See Also

VSFlexGrid Control (page 73)

WallPaper Property

Returns or sets a picture to be used as a background for the control's scrollable area.

WallPaper Property · 203

Syntax

[form!]VSFlexGrid.WallPaper[= Picture]

Remarks

The WallPaper and WallPaperAlignment properties are used to provide the VSFlexGrid control with a
graphical background such as a texture or a logo.

The picture below shows a grid with wallpaper:

When creating or selecting pictures for use as wallpaper, consider the following points:

The WallPaper is a static backdrop. It does not scroll along with the grid contents. Thus, you cannot use it to
add graphical elements that are related to grid contents such as boxes around specific cells or range highlights.
The wallpaper is applied only to the scrollable areas of the grid. Fixed cells are not affected.

The WallPaper picture is displayed "behind" the grid contents. If you use a picture that has strong colors, the
grid contents may be obscured. You may want to use an image editor such as PaintBrush or the Microsoft
Image Composer to create "faded" versions of pictures for use as wallpaper. If you want to use dark pictures,
set the ForeColor property to a light value so the grid contents will be clearly visible.

When using wallpaper, remember to set the BackColor property to a value that matches the predominant
color on the wallpaper picture. Even with wallpaper, the grid's BackColor is still used to paint the small areas
beyond the grid, next to the fixed cells, the background of edit controls, and the background of the control
itself, if the wallpaper picture is transparent.

You can use transparent pictures such as icons, metafiles, or GIFs as wallpaper. However, rendering
transparent GIFs is generally much slower than rendering solid pictures. We recommend using solid,
compressed JPG pictures as wallpaper. This yields good results both in terms of rendering speed and disk
space.

The code below loads a picture center-aligned into the background of the grid:

 Private Sub Form_Load()
 fg.WallPaper = LoadPicture("c:\temp\shark.gif")
 fg.WallPaperAlignment = flexPicAlignCenterCenter

 End Sub

204 · VSFlexGrid Control

Data Type

Picture

See Also

VSFlexGrid Control (page 73)

WallPaperAlignment Property

Returns or sets the alignment of the WallPaper background picture.

Syntax

[form!]VSFlexGrid.WallPaperAlignment[= PictureAlignmentSettings]

Remarks

The WallPaper and WallPaperAlignment properties are used to provide the VSFlexGrid control with a
graphical background such as a texture or a logo.

The settings for the WallPaperAlignment property are the same as those used for the CellPicture property.
The default setting, flexPicAlignStretch (9), has the advantage of ensuring that the entire picture will be visible,
and that no areas of the grid will be left unpainted. However, this setting also causes the slowest repaint. If the
WallPaper picture is large, consider using the flexPicAlignLeftTop (0) setting instead. If the WallPaper picture is
small, consider using the flexPicAlignTile (10) setting instead.

For details on using grid wallpaper, see the WallPaper property.

Data Type

PictureAlignmentSettings (Enumeration)

Default Value

flexPicAlignStretch (9)

See Also

VSFlexGrid Control (page 73)

WordWrap Property

Returns or sets whether text wider that its cell will wrap.

Syntax

[form!]VSFlexGrid.WordWrap [= {True | False}]

Default Value

False

See Also

VSFlexGrid Control (page 73)

VSFlexGrid Methods

AddItem Method

Adds a row to the control.

Archive Method · 205

Syntax

[form!]VSFlexGrid.AddItem Item As String, [Row As Long]

Remarks

The parameters for the AddItem method are described below:

Item As String

String expression to add to the control. The string contains entries for each column on the new row, separated
by tabs (vbTab or Chr(9)). You may change the column separator character by assigning a new value to the
ClipSeparators property.

Row As Long (optional)

Zero-based index representing the position within the control where the new row is placed. If Row is omitted,
the new row is added at the bottom of the grid.

For example:

 fg.FormatString = "=Rec#|Name |Phone|Hired"
 fg.Cols = 4
 fg.Rows = 1
 fg.AddItem fg.Rows & vbTab & "Paul" & vbTab & "555-1212" & vbTab &
"12/10/1997"
 fg.AddItem fg.Rows & vbTab & "John" & vbTab & "555-1313" & vbTab &
"12/10/1997", 1

This code adds a row, then inserts another one above the first.

To remove rows, use the RemoveItem method. Alternatively, you may add or remove rows at the bottom of
the grid by setting the Rows property.

See Also

VSFlexGrid Control (page 73)

Archive Method

Adds, extracts, or deletes files from a vsFlexGrid archive file.

Syntax

[form!]VSFlexGrid.Archive ArcFileName As String, FileName As String, Action As ArchiveSettings

Remarks

This method allows you to combine several files into one, optionally compressing the data. This is especially
useful for applications that store data in several grids.

To save the grid to a file, use the SaveGrid method. To load the data back from the file, use the LoadGrid
method. To obtain information from an archive file, use the ArchiveInfo property.

The parameters for the Archive method are described below:

ArcFileName As String

This parameter contains the name of the archive file, including its path.

FileName As String

This parameter contains the name of the file to be added, deleted, or extracted from the archive.

Action As ArchiveSettings

206 · VSFlexGrid Control

This parameter specifies the action to perform on the archive. Valid settings are:

Constant Value Description

arcAdd 0 Adds the file FileName to the archive ArcFileName,
compressing it. If the archive file does not exist, it is created.
If the file is already present in the archive, it is overwritten
with the new contents.

arcStore 1 Adds the file FileName to the archive ArcFileName, without
compressing it. If the archive file does not exist, it is created.
If the file is already present in the archive, it is overwritten
with the new contents.

arcDelete 2 Removes the file FileName from the archive ArcFileName.

arcExtract 3 Creates a copy of the file FileName on the disk. The file is
created on the directory specified in the FileName parameter,
or in the archive directory if no path is specified.

For example, the code below creates or opens an archive file named "c:\arc.fg", then adds two files to the
archive:

 fg.Archive "c:\arc.fg", "c:\autoexec.bat", arcAdd
 fg.Archive "c:\arc.fg", "c:\config.sys", arcAdd

See Also

VSFlexGrid Control (page 73)

AutoSize Method

Resizes column widths or row heights to fit cell contents.

Syntax

[form!]VSFlexGrid.AutoSize Col1 As Long, [Col2 As Long], [Equal As Boolean], [ExtraSpace As Single]

Remarks

The parameters for the AutoSize method are described below:

Col1 As Long, Col2 As Long

Specify the first and last columns to be resized so their widths fit the widest entry in each column. The valid
range for these parameters is between 0 and Cols -1. Col2 is optional. If it is omitted, only Col1 is resized.

Equal As Boolean (optional)

If True, all columns between Col1 and Col2 are set to the same width. If False, then each column is resized
independently. This parameter is optional and defaults to False.

ExtraSpace As Single (optional)

Allows you to specify extra spacing, in twips, to be added in addition to the minimum required to fit the
widest entry. This is often useful if you wish to leave extra room for pictures or margins within cells. This
parameter is optional and defaults to zero.

The AutoSize method may also be used to resize row heights. This is useful when text is allowed to wrap
within cells (see the WordWrap property) or when cells have fonts of different sizes (see the Cell property).

BindToArray Method · 207

The AutoSizeMode property determines whether AutoSize will adjust column widths or row heights.

See Also

VSFlexGrid Control (page 73)

BindToArray Method

Binds the grid to an array of variants to be used as storage.

Syntax

[form!]VSFlexGrid.BindToArray [VariantArray As Variant], [RowDim As Long], [ColDim As Long], [
PageDim As Long], [CurrentPage As Long]

Remarks

This method allows you to bind the VSFlexGrid control to a Visual Basic Variant Array or to another
VSFlexGrid control.

When bound to an array, the grid displays values retrieved from the array and automatically writes any
modifications back into the array. The array must have at least two dimensions and it must be an array of
Variants. If the array has more than two dimensions, you may use the control to display one "page" of it at a
time, and you may easily "flip pages".

The parameters on this method allow you to control how the rows and columns map onto the array's
dimensions. By default, columns bind to the first array dimension (0) and rows bind to the second array
dimension (1). This is the order used by ADO when returning recordsets with the GetRows method. The
advantage of this default setting is that you may add or remove rows while preserving existing data using
Visual Basic's Redim Preserve statement, which only allows the last dimension to be modified. If you don't like
the default setting, you may define things differently.

The mapping is always from LBound to UBound on all dimensions. If you want to hide some rows or
columns, set their height or width to zero. The binding does not apply to fixed rows or columns. It works only
for the scrollable (data) part of the control.

If you change the contents or dimensions of the array, you should tell the control to repaint itself so the
changes become visible to the user. You may do this with the Refresh method or by using the BindToArray
method again.

To unbind the control, call the BindToArray method with a Null parameter:

 fg.BindToArray Null

The example below illustrates several variations on this theme. The demo project included in the distribution
package has more examples.

 ' ** Two-dimensional binding:
 Dim arr(4, 8)
 ' Default binding:
 fg.BindToArray arr
 ' fg now has 5 non-fixed columns (0-4) and 9 non-fixed rows (0-8).
 ' the mapping is: arr(i, j) = fg.TextArray(j - fg.FixedRows, i -
fg.FixedCols)
 ' Transposed binding:
 fg.BindToArray arr, 0, 1
 ' fg now has 9 non-fixed columns (0-8) and 5 non-fixed rows (0-4).
 ' the mapping is: arr(i, j) = fg.TextArray(i - fg.FixedRows, j -
fg.FixedCols)
 ' ** Three-dimensional binding (AKA cube, notebook):
 ReDim arr(4, 8, 12)

 ' Default binding:

208 · VSFlexGrid Control

 fg.BindToArray arr
 ' by default, the last dimension becomes the "pages", and the
 ' current page is the first (0), so
 ' fa now has 5 non-fixed columns (0-4) and 9 non-fixed rows (0-8).
 ' the mapping is: arr(i, j, 0) = fg.TextArray(j - fg.FixedRows, i -
fg.FixedCols)
 ' Page Flipping:
 fg.BindToArray arr, , , , 2
 ' the row, col, and page settings are the default, and the current
 ' page is 2 (instead of the default 0), so
 ' fg now has 5 non-fixed columns (0-4) and 9 non-fixed rows (0-8).
 ' the mapping is: arr(i, j, 2) = fg.TextArray(j - fg.FixedRows, i -
fg.FixedCols)

The BindToArray method also allows you to bind the control to another VSFlexGrid control. This way, you
may create different "views" of the same data without having to keep duplicate copies of the data. The syntax
is the same:

 fg.BindToArray fgSource

In this case, the fg control will display the data stored in the fgSource control. Changes to cells in either
control will reflect on the other. When binding to another VSFlexGrid control, the fixed cells are bound as
well as the scrollable ones. The binding only applies to the data, not to the cell formats.

To load data from an array or another VSFlexGrid control without binding, use the LoadArray method
instead.

See Also

VSFlexGrid Control (page 73)

BuildComboList Method

Returns a ColComboList string from data in a recordset.

Syntax

[form!]VSFlexGrid.BuildComboList rs As Object, FieldList As String, [KeyField As Variant], [BackColor As
Variant]

Remarks

The VSFlexGrid control has extensive support for drop-down lists and combo-lists when editing cells. This
support includes multi-column drop-down lists, automatic value translation, and default field highlighting and
relies on two properties, ComboList and ColComboList.

The syntax for creating the lists is simple, but creating the lists can be tedious. The BuildComboList method
builds a ColComboList automatically from a recordset, reducing the amount of programming required.

The parameters for the BuildComboList method are described below:

rs As Object

An ADO or DAO recordset containing the values to be displayed on the grid.

FieldList As String

A string containing a comma-separated list of field names to be displayed. If the list contains more than one
field, a multi-column drop-down list is created. You may define a default field (displayed in the cell when the
list is closed) by preceding its name with an asterisk.

KeyField As String (optional)

The name of the field to be used as a key. This field must be numeric, and is usually the recordset's ID field.

CellBorder Method · 209

BackColor As OLE_COLOR (optional)

The color used to paint the background of the default field while the list is displayed. If omitted, the whole list
is painted using the current cells background color.

For example, the code below displays a list of products from the NorthWind database. The SupplierID and
CategoryID columns use translated lists built with the BuildComboList method to convert the numeric IDs into
company and category names. The code assumes you have created the following controls on the form:

Control Name Description

fg VSFlexGrid control, OLEDB version.

dataProducts ADO Data Control bound to the NorthWind database, Products
table.

dataSuppliers ADO Data Control bound to the NorthWind database, Suppliers
table.

dataCategories ADO Data Control bound to the NorthWind database, Categories
table.

 ' bind grid to Products table
 Private Sub Form_Load()
 fg.Editable = flexEDKbdMouse
 Set fg.DataSource = dataProducts
 End Sub
 Private Sub fg_AfterDataRefresh()

 ' map Suppliers column to display supplier info
 Dim s$
 dataSuppliers.Refresh
 s = fg.BuildComboList(dataSuppliers.Recordset,
"*CompanyName,ContactName", "SupplierID", vbYellow)
 fg.ColComboList(fg.ColIndex("SupplierID")) = s

 ' map Category column to display category info
 dataCategories.Refresh
 s = fg.BuildComboList(dataCategories.Recordset,
"*CategoryName,Description", "CategoryID", vbYellow)
 fg.ColComboList(fg.ColIndex("CategoryID")) = s

 ' make sure all columns are visible
 fg.AutoSize 1, fg.Cols - 1
 End Sub

See Also

VSFlexGrid Control (page 73)

CellBorder Method

Draws a border around and within the selected cells.

Syntax

[form!]VSFlexGrid.CellBorder Color As OLE_COLOR, Left As Integer, Top As Integer, Right As Integer,
Bottom As Integer, Vertical As Integer, Horizontal As Integer

210 · VSFlexGrid Control

Remarks

The CellBorder method allows you to draw borders around groups of cells. It works on the current selection,
so in order to use it, you must start by selecting the group of cells where the border is to be drawn. Then call
the CellBorder method using the following parameters:

Color As OLE_COLOR

This parameter determines the color of the border.

Left, Top, Right, Bottom As Integer

These parameters specify the width, in pixels, of the border to be drawn around the selection. Specify zero to
remove the border, or any negative number to preserve the existing border.

Vertical, Horizontal As Integer

These parameters specify the width, in pixels, of the borders to be drawn inside the selection in the vertical and
horizontal directions. Specify zero to remove the border, or any negative number to preserve the width of the
existing border.

For example, the code below draws blue borders around a selected range:

 Private Sub Form_Load()
 ' draw borders around a table
 fg.Select 1, 1, 4, 4
 fg.CellBorder RGB(0, 0, 125), 2, 3, 2, 2, 1, 1

 ' apply special formatting to first line of table
 fg.Select 1, 1, 1, 4
 fg.CellBorder RGB(0, 0, 125), -1, -1, -1, 3, 0, 0

 End Sub

The result looks like this:

See Also

VSFlexGrid Control (page 73)

CellBorderRange Method

Similar to the CellBorder method, but allows the user to specify the range instead of using the selection
CellBorderRange.

Syntax

Sub CellBorderRange(Row1 As Long, Col1 As Long, Row2 As Long, Col2 As Long, Color As
OLE_COLOR, Left As Integer, Top As Integer, Right As Integer, Bottom As Integer, Vertical As Integer,
Horizontal As Integer)

Remarks

The parameters for the CellBorderRange method are described below:

Row1, Col1, Row2, Col2 As Long

Clear Method · 211

These parameters specify the range where the border will be applied.

Color As OLE_COLOR

This parameter determines the color of the border.

Left, Top, Right, Bottom As Integer

These parameters specify the width, in pixels, of the border to be drawn around the selection. Specify zero to
remove the border, or any negative number to preserve the existing border.

Vertical, Horizontal As Integer

These parameters specify the width, in pixels, of the borders to be drawn inside the selection in the vertical and
horizontal directions. Specify zero to remove the border, or any negative number to preserve the existing
border.

See Also

VSFlexGrid Control (page 73)

Clear Method

Clears the contents of the control. Optional parameters specify what to clear and where.

Syntax

[form!]VSFlexGrid.Clear [Where As Variant], [What As Variant]

Remarks

The parameters for the Clear method are described below:

Where As ClearWhereSettings (optional)

Defines what part of the grid will be cleared. Valid settings for this parameter are:

Constant Value Description

flexClearEverywhere 0 Clear everywhere (this is the default setting).

flexClearScrollable 1 Clear scrollable region (excludes fixed rows and
columns).

flexClearSelection 2 Clear current selection.

What As ClearWhatSettings (optional)

Defines what part of the grid's information will be cleared. Valid settings for this parameter are:

Constant Value Description

FlexClearEverything 0 Clear cell text, formatting and custom data (this is the
default setting).

FlexClearText 1 Clear text only.

FlexClearFormatting 2 Clear custom formatting only (including pictures and
cell data).

FlexClearData 3 Clears all custom data (row, column, and cell data).

212 · VSFlexGrid Control

The Clear method does not affect the number of rows and columns on the grid, and cannot be used to clear
data when the grid is bound data source.

You may clear the text or custom formatting in an arbitrary range using the Cell property.

For example, the following code clears all text and custom formatting in a range:

 fg.Cell(flexcpText, r1, c1, r2, c2) = ""
 fg.Cell(flexcpCustomFormat, r1, c1, r2, c2) = False

This example clears the text of the selected cell(s) while leaving the picture and cell data intact:

 fg.Clear flexClearSelection, flexClearText

See Also

VSFlexGrid Control (page 73)

Copy Method

Copy selection to the Clipboard.

Syntax

Sub Copy()

See Also

VSFlexGrid Control (page 73)

Cut Method

Cut selection to the Clipboard.

Syntax

Sub Cut()

See Also

VSFlexGrid Control (page 73)

DataRefresh Method

Forces the control to re-fetch all data from its data source.

Syntax

[form!]VSFlexGrid.DataRefresh

See Also

VSFlexGrid Control (page 73)

Delete Method

Deletes the selection.

Syntax

Sub Delete()

See Also

VSFlexGrid Control (page 73)

DragRow Method · 213

DragRow Method

Starts dragging a row to a new position.

Syntax

[form!]VSFlexGrid.DragRow Row As Long

Remarks

The DragRow method allows you to initiate row dragging programmatically. The user can then move the row
to a new position, and you get notified with the BeforeMoveRow and AfterMoveRow events. The method
returns the row's new position.

For example, the code below traps the BeforeMouseDown event to initiate row dragging when the user clicks
the right mouse button. The code highlights the row being dragged by setting its background color to red, and
restores the background after the dragging process ends.

Private Sub fg_BeforeMouseDown(ByVal Button As Integer, ByVal Shift As
Integer, ByVal X As Single, ByVal Y As Single, Cancel As Boolean)
 With fg
 If Button = 2 Then
 Cancel = True
 Dim r%
 r = .Row
 .Cell(flexcpBackColor, r, 1, r, .Cols - 1) = vbRed
 r = .DragRow(r)
 .Cell(flexcpCustomFormat, r, 1, r, .Cols - 1) = False
 Debug.Print "Dragged to "; r
 End If
 End With
End Sub

See Also

VSFlexGrid Control (page 73)

EditCell Method

Activates edit mode.

Syntax

[form!]VSFlexGrid.EditCell

Remarks

If the Editable property is set to a non-zero value, the control goes into editing mode automatically when the
user presses the edit key (F2), the space bar, or any printable character. You may use the EditCell method to
force the control into cell-editing mode.

Note that EditCell will force the control into editing mode even if the Editable property is set to False. You
may even use it to allow editing of fixed cells.

A typical use for this method is shown in the example below. The code traps the right mouse button to initiate
editing.

 Sub fg_MouseDown(Button As Integer, Shift As Integer, X!, Y!)
 If Button = vbRightButton Then
 fg.Select fg.MouseRow, fg.MouseCol
 fg.EditCell
 End If
 End Sub

214 · VSFlexGrid Control

See Also

VSFlexGrid Control (page 73)

FinishEditing Method

Finishes any pending edits and returns the grid to browse mode.

Syntax

[form!]VSFlexGrid.FinishEditing Cancel As Boolean

See Also

VSFlexGrid Control (page 73)

GetMergedRange Method

Returns the range of merged cells that includes a given cell.

Syntax

[form!]VSFlexGrid.GetMergedRange Row As Long, Col As Long, R1 As Long, C1 As Long, R2 As Long, C2
As Long

Remarks

The VSFlexGrid control can merge cells based on their contents. This method allows you to determine
whether a cell is merged with its neighboring cells.

For example, the following code changes the contents of a merged cell preserving the merged range:

 ' create a merged range
 fg.MergeCells = flexMergeFree
 fg.MergeRow(1) = True
 fg.Cell(flexcpText, 1, 1, 1, 4) = "Merged Range"
 ' this changes only cell 1, 1
 fg.Cell(flexcpText, 1, 1) = "Merged Range Has Changed"
 ' this changes the whole merged range
 Dim r1&, c1&, r2&, c2&
 fg.GetMergedRange 1, 2, r1, r2, c1, c2
 fg.Cell(flexcpText, 1, 1, 1, 4) = "Merged Range Has Changed"

For more details on cell merging, see the MergeCells property.

See Also

VSFlexGrid Control (page 73)

GetNode Method

Returns an outline node object for a given subtotal row.

Syntax

[form!]VSFlexGrid.GetNode Row As VSFlexNod

See Also

VSFlexGrid Control (page 73)

GetNodeRow Method · 215

GetNodeRow Method

Returns the number of a row's parent, first, or last child in an outline.

Syntax

[form!]VSFlexGrid.GetNodeRow(Row As Long, Which As NodeTypeSettings)[= value As Long]

Remarks

When the grid is used in outline mode, this method allows you to determine a node's parent, first, or last child
nodes.

The parameters for the GetNodeRow property are described below:

Row As Long

The row number of the node whose parent or child nodes you want to determine.

Which As NodeTypeSettings

Which node to return. Valid settings for this parameter are:

Constant Value Description

FlexNTRoot 0 Returns the index of the node's top level
ancestor.

FlexNTParent 1 Returns the index of the node's immediate
parent.

FlexNTFirstChild 2 Returns the index of the node's first child node.

FlexNTLastChild 3 Returns the index of the node's last child node.

FlexNTFirstSibling 4 Returns the index of the node's first sibling node
(may be same row)

FlexNTLastSibling 5 Returns the index of the node's last sibling node
(may be same row)

FlexNTPreviousSibling 6 Returns the index of the node's previous sibling
node (-1 if this is the first sibling)

FlexNTNextSibling 7 Returns the index of the node's next sibling node
(-1 if this is the last sibling)

If the node requested cannot be found, GetNodeRow returns -1. For example, the root node has no parent,
and empty nodes have no children.

The code below shows two typical uses for the GetNodeRow property:

 ' traverse an outline and return the full path to a given node
 Private Function GetFullPath(r As Long)
 Dim s$
 While r > -1
 s = fg.TextMatrix(r, 0) & "\" & s
 r = fg.GetNodeRow(r, flexNTParent)
 Wend
 GetFullPath = s
 End Function
 ' delete an outline node and all its children
Private Sub DeleteNode(r As Long)

216 · VSFlexGrid Control

 Dim nRows&
 nRows = fg.GetOutlineNode(r, flexNTLastChild) - r + 1
 While nRows > 0
 fg.RemoveItem r
 nRows = nRows - 1
 Wend
End Sub

Data Type

Long

See Also

VSFlexGrid Control (page 73)

GetSelection Method

Returns the current selection ordered so that Row1 <= Row2 and Col1 <= Col2.

Syntax

[form!]VSFlexGrid.GetSelection Row1 As Long, Col1 As Long, Row2 As Long, Col2 As Long

Remarks

When programming the VSFlexGrid control, a common task is looping through the currently selected range
to perform some action on the selected cells, defined by the values of the Row, RowSel, Col, and ColSel
properties. When setting up such loops, you should take into account the fact that Row may be greater than or
smaller than RowSel, and Col may be greater than or smaller than ColSel. Instead of comparing these values
to set up the loop bounds, use the GetSelection to obtain the loop bounds in the proper order.

For example, the code below prints the contents of the selected range:

 Dim r&, c&, r1&, c1, r2&, c2&
 fg.GetSelection r1, c1, r2, c2
 For r = r1 To r2
 For c = c1 To c2
 Debug.Print fg.TextMatrix
 Next
 Next

See Also

VSFlexGrid Control (page 73)

LoadArray Method

Loads the control with data from a Variant array or from another FlexGrid control.

Syntax

[form!]VSFlexGrid.LoadArray [VariantArray As Variant], [RowDim As Long], [ColDim As Long], [
PageDim As Long], [CurrentPage As Long]

Remarks

The LoadArray method loads the grid with data from a Variant array or from another grid. It is identical to
the BindToArray method, except BindToArray keeps the grid connected to the source array or control.
LoadArray simply loads the data and does not keep a connection between the control and the data source.

For a description of the parameters and some examples, see the BindToArray method.

LoadGrid Method · 217

See Also

VSFlexGrid Control (page 73)

LoadGrid Method

Loads grid contents and format from a file.

Syntax

[form!]VSFlexGrid.LoadGrid FileName As String, LoadWhat As SaveLoadSettings, [Options As Variant]

Remarks

This method loads grid from a file previously saved with the SaveGrid method, comma-delimited text file
(CSV format) such as an Excel text file, or a tab-delimited text file.

The parameters for the LoadGrid method are described below:

FileName As String

The name of the file to load, including the path. This file must have been created by the SaveGrid method, or
an Invalid File Format error will occur (error #321).

LoadWhat As SaveLoadSettings

This parameter specifies what should be loaded. Valid options are:

Constant Value Description

flexFileAll 0 Load all data and formatting information available
in the file.

flexFileData 1 Load only the data, ignoring formatting information.

flexFileFormat 2 Load only the formatting, ignoring the data.

flexFileCommaText 3 Load data from a comma-delimited text file.

flexFileTabText 4 Load data from a tab-delimited text file.

flexFileCustomText 5 Load data from a text file using the delimiters
specified by the ClipSeparators property.

flexFileExcel 6 Load a sheet from an Excel97 file (you can specify
which sheet to load using the Options parameter).
This filter does not support frozen color rows or
columns.

Options As Variant (optional)

When saving and loading text files, this parameter allows you to specify whether fixed cells are saved and
restored. The default is False, which means fixed cells are not saved or restored.

When saving and loading Excel files, this parameter allows you to specify the name or index of the sheet to be
loaded, or the name of the sheet to be saved. If omitted, the first sheet is loaded.

Notes

The flexFileExcel option is new in Version 8. It does not require Excel to be present on the machine. You can
load and save Excel97 sheets (BIFF9 format), one sheet per workbook only (when loading, you can specify
which sheet using the Options parameter).

218 · VSFlexGrid Control

The Excel filter supports cell values (including formula values), fonts, formats, colors, row and column
dimensions. It does not support features that don't translate into the grid, such as macros, charts, rotated text,
cell borders, and other advanced formatting.

Starting in build 200, the control also recognizes a string parameter when saving/loading text files. If the string
contains an 'f', fixed cells will be included when saving/loading. If the string contains a 'v', only visible cells
will be saved to the text files.

For example:

fg.Save("c:\export\)

See Also

VSFlexGrid Control (page 73)

LoadGridURL Method

Loads grid contents and format from a URL (created with SaveGrid).

Syntax

[form!]VSFlexGrid.LoadGridURL URL As String, LoadWhat As SaveLoadSettings, [Options As Variant]

Remarks

URL As String

The URL to load, including the path.

LoadWhat As SaveLoadSettings

This parameter specifies what should be loaded. Valid options are:

Constant Value Description

flexFileAll 0 Load all data and formatting information available
in the file.

flexFileData 1 Load only the data, ignoring formatting information.

flexFileFormat 2 Load only the formatting, ignoring the data.

flexFileCommaText 3 Load data from a comma-delimited text file.

flexFileTabText 4 Load data from a tab-delimited text file.

flexFileCustomText 5 Load data from a text file using the delimiters
specified by the ClipSeparators property.

flexFileExcel 6 Load a sheet from an Excel97 file (you can specify
which sheet to load using the Options parameter).
This filter does not support frozen color rows or
columns.

Options As Variant (optional)

When saving and loading text files, this parameter allows you to specify whether fixed cells are saved and
restored. The default is False, which means fixed cells are not saved or restored.

When saving and loading Excel files, this parameter allows you to specify the name or index of the sheet to be
loaded, or the name of the sheet to be saved. If omitted, the first sheet is loaded.

OLEDrag Method · 219

See Also

VSFlexGrid Control (page 73)

OLEDrag Method

Initiates an OLE drag operation.

Syntax

[form!]VSFlexGrid.OLEDrag

Remarks

When the OLEDrag method is called, the control's OLEStartDrag event occurs, allowing it to supply data to
a target component.

See Also

VSFlexGrid Control (page 73)

Outline Method

Sets an outline level for displaying subtotals.

Syntax

[form!]VSFlexGrid.Outline Level As Integer

Remarks

The Outline method collapses or expands an outline to the level specified, collapsing or expanding multiple
nodes simultaneously.

The method shows all nodes that have RowOutlineLevel smaller than or equal to the Level parameter specified.
Thus, small Level values collapse the outline more, and large values expand it more. If Level is set to zero, only
the root node is visible. If Level is set to a very large value (say 100 or so), the outline is totally expanded.

Setting Level to -1 causes the outline to be totally expanded.

When the nodes are collapsed or expanded, the control fires the BeforeCollapse and AfterCollapse events.
You may trap these events to cancel the action. See the BeforeCollapse event for an example.

To set up an outline structure using automatic subtotals, see the Subtotal method. To set up a custom outline
structure, see the IsSubtotal property. For more details on creating and using outlines, see the Outline Demo.

See Also

VSFlexGrid Control (page 73)

Paste Method

Pastes the selection from the Clipboard.

Syntax

Sub Paste()

See Also

VSFlexGrid Control (page 73)

220 · VSFlexGrid Control

PrintGrid Method

Prints the grid on the printer.

Syntax

[form!]VSFlexGrid.PrintGrid [DocName As String], [ShowDialog As Boolean], [Orientation As Integer], [
MarginLR As Long], [MarginTB As Long]

Remarks

The parameters for the PrintGrid method are described below:

DocName As String (optional)

Contains the name of the document being printed. This string appears in the printer window's job list and is
also used as a footer.

ShowDialog As Variant (optional, default value = False)

If set to True, a printer selection/setup dialog is displayed before the document start printing. The user can
then select which printer to use, page orientation etc.

Orientation As Variant (optional, default value = printer default)

Set this parameter to 1 to print the grid in Portrait mode, or set it to 2 to print the grid in Landscape mode.
The default setting, zero, uses the default printer orientation.

MarginLR As Variant (optional, default value = 1440)

Left and right margins, in twips. The margins must be equal. The default value, 1440, corresponds to a one-
inch margin.

MarginTB As Variant (optional)

Top and bottom margins, in twips. The margins must be equal. The default value, 1440, corresponds to a one-
inch margin.

The grid is printed using the same fonts used to display it on the screen, so to achieve best results, make sure
the grid's Font property is set to a TrueType font (such as Arial, Times New Roman, Tahoma, or Verdana).

While printing the grid, the control fires the BeforePageBreak and GetHeaderRow events. These events allow
you to control page breaks and setup repeating headers.

The PrintGrid method prints the entire grid, possibly spilling across and down to new pages. To print only a
part of the grid, hide to rows and columns you don't want to print, call the PrintGrid method, and restore the
hidden rows and columns when you are done.

The code below shows how you can do this:

Private Sub PrintSelection(fg As VSFlexGrid, Row1&, Col1&, Row2&,
Col2&)
 ' save current settings
 Dim hl%, tr&, lc&, rd%
 hl = fg.HighLight: tr = fg.TopRow: lc = fg.LeftCol: rd =
fg.Redraw
 fg.HighLight = 0
 fg.Redraw = flexRDNone

 ' hide non-selected rows and columns
 Dim i&
 For i = fg.FixedRows To fg.Rows – 1
 If i < Row1 Or i > Row2 Then fg.RowHidden(i) = True
 Next
 For i = fg.FixedCols To fg.Cols – 1

RemoveItem Method · 221

 If i < Col1 Or i > Col2 Then fg.ColHidden(i) = True
 Next
 ' scroll to top left corner
 fg.TopRow = fg.FixedRows
 fg.LeftCol = fg.FixedCols

 ' print visible area
 fg.PrintGrid
 ' restore control
 fg.RowHidden(-1) = False
 fg.ColHidden(-1) = False
 fg.TopRow = tr: fg.LeftCol = lc: fg.HighLight = hl
 fg.Redraw = rd
 End Sub

See Also

VSFlexGrid Control (page 73)

RemoveItem Method

Removes a row from the control.

Syntax

[form!]VSFlexGrid.RemoveItem [Row As Long]

Remarks

The Row parameter determines which row should be removed from the control. If provided, it must be in the
range between 0 and Rows-1, or an Invalid Index error will occur. If omitted, the last row is deleted.

See Also

VSFlexGrid Control (page 73)

SaveGrid Method

Saves grid contents and format to a file.

Syntax

[form!]VSFlexGrid.SaveGrid FileName As String, SaveWhat As SaveLoadSettings, [FixedCells As Boolean]

Remarks

This method saves a grid to a binary or to a text file. The grid may be retrieved later with the LoadGrid
method. Grids saved to text files may also be read by other programs, such as Microsoft Excel or Microsoft
Word.

The parameters for the SaveGrid method are described below:

FileName As String

The name of the file to create, including the path. If a file with the same name already exists, it is overwritten.

SaveWhat As SaveLoadSettings

This parameter specifies what should be saved. Valid options are:

Constant Value Description

flexFileAll 0 Save all data and formatting information.

222 · VSFlexGrid Control

Constant Value Description

flexFileData 1 Save only the data, ignoring formatting
information.

flexFileFormat 2 Save only the global formatting, ignoring the data.

flexFileCommaText 3 Save data to a comma-delimited text file.

flexFileTabText 4 Save data to a tab-delimited text file.

flexFileCustomText 5 Save data to a text file using the delimiters
specified by the ClipSeparators property.

flexFileExcel 6 Save all data and formatting information to an
Excel97 file. This filter does not support frozen
color rows or columns.

Options As Variant (optional)

When saving and loading text files, this parameter allows you to specify whether fixed cells are saved and
restored. The default is False, which means fixed cells are not saved or restored.

When saving and loading Excel files, this parameter allows you to specify the name or index of the sheet to be
loaded, or the name of the sheet to be saved. If omitted, the first sheet is loaded.

The options for saving fixed rows, columns, and translated combo values include:

Constant Value Description

flexXLSaveFixedCells 3 Saves fixed cells.

flexXLSaveFixedRows 2 Saves fixed rows.

flexXLSaveFixedCols 1 Saves fixed columns.

flexXLSaveRaw 4 Saves raw (untranslated) data.

For example, the options can be written as:

fg.SaveGrid "book1.xls", flexFileExcel
fg.SaveGrid "book1.xls", flexFileExcel, "sheetName"
fg.SaveGrid "book1.xls", flexFileExcel, flexXLSaveFixedCells
fg.SaveGrid "book1.xls", flexFileExcel, flexXLSaveFixedRows
fg.SaveGrid "book1.xls", flexFileExcel, flexXLSaveFixedCols
fg.SaveGrid "book1.xls", flexFileExcel, flexXLSaveRaw
fg.SaveGrid "book1.xls", flexFileExcel, _
 flexXLSaveFixedCells Or flexXLSaveRaw

Notes

The flexFileFormat option saves global formatting only. It does not save any cell-specific information, not even
the number of rows and columns. This allows you to use this setting to create formats that can be applied to
existing grids even if they have different dimensions.

Because column widths and row heights are related to the number of rows and columns on the grid, they are
not saved or restored if you use the flexFileFormat option. The following is a list of the properties that do get
saved and restored if you use the flexFileFormat option:

BackColor, ForeColor, BackColorBkg, BackColorAlternate, BackColorFixed, ForeColorFixed,
BackColorSel, ForeColorSel, TreeColor, SheetBorder, GridLines, GridLinesFixed, GridLineWidth,

Select Method · 223

GridColor, GridColorFixed, TextStyle, TextStyleFixed, ScrollBars, SelectionMode, RowHeightMin,
MergeCells, SubtotalPosition, OutlineBar, Font, and WordWrap.

If your application requires you to save several grids, you should consider using the Archive method to
compress and combine them all into a single archive file. You can later use the ArchiveInfo method to retrieve
information from the archive file.

The flexFileExcel option is new in Version 8. It does not require Excel to be present on the machine. You can
load and save Excel97 sheets (BIFF9 format), one sheet per workbook only (when loading, you can specify
which sheet using the Options parameter).

The Excel filter supports cell values (including formula values), fonts, formats, colors, row and column
dimensions. Several improvements have been made so that it now also supports more than 30k rows, word-
wrapping and all ColorAlternate and ColorFrozen properties. It does not support features that don't translate
into the grid, such as macros, charts, rotated text, cell borders, and other advanced formatting.

Starting in build 200, the control also recognizes a string parameter when saving/loading text files. If the string
contains an 'f', fixed cells will be included when saving/loading. If the string contains a 'v', only visible cells
will be saved to the text files. For example:

fg.SaveGrid "book1.csv", flexFileCommaText, "fv"

See Also

VSFlexGrid Control (page 73)

Select Method

Selects a range of cells.

Syntax

[form!]VSFlexGrid.Select Row As Long, Col As Long, [RowSel As Long], [ColSel As Long]

Remarks

The Select method allows you to select ranges or cells (by omitting the last two parameters) with a single
command.

The following code selects the entire scrollable (data) part of the control:

 fg.Select _
 fg.FixedRows, fg.FixedCols, fg.Rows - 1, fg.Cols - 1

This method is more efficient than setting the Row, Col, RowSel, and ColSel properties separately and makes
the code more readable.

You may use the GetSelection method to retrieve the current selection.

See Also

VSFlexGrid Control (page 73)

ShowCell Method

Brings a given cell into view, scrolling the contents if necessary.

Syntax

[form!]VSFlexGrid.ShowCell [Row As Long], [Col As Long]

See Also

VSFlexGrid Control (page 73)

224 · VSFlexGrid Control

Subtotal Method

Inserts rows with summary data.

Syntax

[form!]vsFlexGrid.Subtotal Function As SubtotalSettings, [GroupOn As Long], [TotalOn As Long], [Format
As String], [BackColor As Color], [ForeColor As Color], [FontBold As Boolean], [Caption As String], [
MatchFrom As Long], [TotalOnly As Boolean]

Remarks

The Subtotal method adds subtotal rows which summarize the data in the control.

Subtotal rows are used for summarizing data and for displaying outlines. You may use the Subtotal method to
create subtotal rows automatically, or the IsSubtotal property to create them manually.

Each subtotal row has a level that is used to indicate which column is being grouped. The subtotal level is also
used for outlining. When you created subtotals using the Subtotal method, the level is set automatically based
on the GroupOn parameter. When you create an outline manually, use the RowOutlineLevel property to set
the outline level for each subtotal row.

Subtotal rows may be added at the top or at the bottom of the values being summarized. This is determined by
the SubtotalPosition property. When creating outlines, you will typically use the SubtotalPosition property is
used to place the subtotals above the data. When creating reports, you will typically use the SubtotalPosition
property to place the subtotals below the data.

The parameters for the Subtotal method are described below:

Function As SubtotalSettings

This parameter specifies the type of aggregate function to be used for the subtotals. Valid settings are:

Constant Value Description

flexSTNone 0 Outline only, no aggregate values

flexSTClear 1 Clear all subtotals

flexSTSum 2 Sum

flexSTPercent 3 Percent of total sum

flexSTCount 4 Row count

flexSTAverage 5 Average

flexSTMax 6 Maximum

flexSTMin 7 Minimum

flexSTStd 8 Standard deviation

flexSTVar 9 Variance

flexSTStdPop 10 Standard Deviation Population

flexSTVarPop 11 Variance Population

GroupOn As Long (optional)

This parameter specifies the column that contains the categories for calculation of a subtotal. By default, the
control assumes that all data is sorted from the leftmost column to the column specified as GroupOn.

Subtotal Method · 225

Consequently, a subtotaling break occurs whenever there is a change in any column from the leftmost one up
to and including the column specified as GroupOn.

To create subtotals based on a column or range of columns that does not start with the leftmost column, use
the MatchFrom parameter. If MatchFrom is specified, the control generates subtotal line only on a change of
data in any column between and including column MatchFrom and GroupOn.

For example, to subtotal values in column 3 of the control whenever there are changes in column 2 only, use

 fg.Subtotal flexSTSum, 2, 3, , , , , 2

TotalOn As Long (optional)

This parameter specifies the column that contains the values to use when calculating the total.

Format As String (optional)

This parameter specifies the format to be used for displaying the results. The syntax for the format string is
similar but not identical to the syntax used with Visual Basic's Format command. For a detailed description of
the syntax used to specify formats, see the ColFormat property. If this parameter is omitted, the column's
default format (defined by the ColFormat property) is used.

BackColor, ForeColor As Color (optional)

These parameters specify the colors to be used for the cells in the subtotal rows.

FontBold As Boolean (optional)

This parameter specifies whether text in the subtotal rows should be boldfaced.

Caption As Variant (optional)

This parameter specifies the text that should be put in the subtotal rows. If omitted, the text used is the
function name plus the category name (for instance, "Total Widgets"). If supplied, you may add a "%s" marker
to indicate a place where the category name should be inserted (e.g. "The %s Count").

MatchFrom As Variant (optional)

When deciding whether to insert a subtotal row between two adjacent rows, the control compares the values in
columns between MatchFrom and GroupOn. If any of these cells are different, a subtotal row is inserted. The
default value for MatchFrom is FixedCols, which means all columns to the left of and including GroupOn must
match, or a subtotal row will be inserted. If you set MatchFrom to the same value as GroupOn, then subtotal
rows will be inserted whenever the contents of the GroupOn column change.

TotalOnly As Boolean (optional)

By default, the control will copy the contents of all columns between MatchFrom and GroupOn to the new
subtotal row, and will place the calculated value on column TotalOn. If you set the TotalOnly parameter to
True, the control will not copy the contents of the rows. The subtotal row will contain only the title and the
calculated value.

The example below shows how to use the Subtotal method.

 ' this assumes we have a populated grid fa with
 ' 4 columns: product, employee, region, and sales
 fg.ColFormat(3) = "$(#,###.00)" ' set format for calculated totals
 fg.Subtotal flexSTClear ' remove old values
 ' calculate subtotals (the order doesn't matter)
 ' (sales values to be added are in column 3)
 ' col 0: product
 fg.Subtotal flexSTSum, 0, 3, , vbRed
 ' col 1: employee
 fg.Subtotal flexSTSum, 1, 3, , vbGreen
 ' col 2: region
 fg.Subtotal flexSTSum, 2, 3, , vbBlue

226 · VSFlexGrid Control

 ' total on a negative column to get a grand total
 fg.Subtotal flexSTSum, -1, 3, , vbblue, vbwhite, True

The parameters in the Subtotal method allow a great deal of customization. The example below shows how
the Caption and TotalOnly parameters can be used to generate report-type subtotals:

 fg.ColFormat(3) = "$(#,###.00)" ' set format for calculated totals
 fg.Subtotal flexSTClear ' remove old values
 ' calculate subtotals (the order doesn't matter)
 ' (sales values to be added are in column 3)
 ' col 0: product
 fg.Subtotal flexSTSum, 0, 3, , vbRed ,,," TotPrd %s",,True
 ' col 1: employee
 fg.Subtotal flexSTSum, 1, 3, , vbGreen,,," TotEmp %s",,True
 ' col 2: region
 fg.Subtotal flexSTSum, 2, 3, , vbBlue ,,," TotRgn %s",,True
 ' total on a negative column to get a grand total
 fg.Subtotal flexSTSum, -1, 3, , vbblue, vbwhite, True

See Also

VSFlexGrid Control (page 73)

VSFlexGrid Events

AfterCollapse Event

Fired after the user expands or collapses one or more rows in an outline.

Syntax

Private Sub VSFlexGrid_AfterCollapse(ByVal Row As Long, ByVal State As Integer)

AfterDataRefresh Event · 227

Remarks

This event is fired when the grid is used in outline mode and the user expands or collapses one or more nodes.

The parameters for the AfterCollapse event are described below:

Row As Long

If a single node is being expanded or collapsed, this parameter has the row number of the node being expanded
or collapsed. If multiple nodes are being collapsed or expanded, this parameter is set to -1.

State As Integer

If a single node is being expanded or collapsed, this parameter has the new state of the node. If multiple node
are being collapsed or expanded, this parameter is set to the new outline level being displayed.

Possible node states are:

Constant Value Description

flexOutlineExpanded 0 The node is expanded: all subordinate nodes are
visible.

flexOutlineSubtotals 1 The node is partially expanded: subordinates
nodes are visible but collapsed.

flexOutlineCollapsed 2 The node is collapsed: all subordinate nodes are
hidden.

Single nodes are expanded or collapsed when the user clicks the outline tree (see the OutlineBar property) or
when a new node state is assigned to the IsCollapsed property of a specific row. Multiple nodes are expanded
or collapsed when the user clicks the outline buttons across the top of the outline tree or when the Outline
method is invoked by the host application.

See also the BeforeCollapse event.

See Also

VSFlexGrid Control (page 73)

AfterDataRefresh Event

Fired after reading data from the record source.

Syntax

Private Sub VSFlexGrid_AfterDataRefresh()

Remarks

The AfterDataRefresh event is useful when the control is bound to a recordset and you to perform certain
operations on the data whenever it is refreshed. For example, you might want to display subtotals or add
special formatting to certain columns or cells.

When the source recordset changes, all existing columns are destroyed and recreated from scratch. In this
process, most column properties are reset to their default values. Thus, if you set up your columns using the
ColEditMask, ColFormat, ColComboList, ColImageList, etc you should do it in response to the
AfterDataRefresh event.

228 · VSFlexGrid Control

The AfterDataRefresh event fires when a new recordset is assigned to the controls DataSource property, or
when the current source recordset is modified (e.g. records are added or deleted). This event only fires when
the DataMode property is set to a non-zero value.

See Also

VSFlexGrid Control (page 73)

AfterEdit Event

Fired after the control exits cell edit mode.

Syntax

Private Sub VSFlexGrid_AfterEdit(ByVal Row As Long, ByVal Col As Long)

Remarks

This event is fired after the contents of a cell have been changed by the user. It is useful for performing actions
such as re-sorting the data or calculating subtotals.

The AfterEdit event is not adequate for performing data validation, because it is fired after the changes have
been applied to the control. To validate user-entered data, use the ValidateEdit event instead.

See Also

VSFlexGrid Control (page 73)

AfterMoveColumn Event

Fired after a column is moved by dragging on the ExplorerBar.

Syntax

Private Sub VSFlexGrid_AfterMoveColumn(ByVal Col As Long, Position As Long)

Remarks

This event is only fired if the column was moved by dragging it using the ExplorerBar. It is not fired if the
column was moved with the ColPosition property.

The parameters for the AfterMoveColumn event are described below:

Col As Long

This parameter holds the index of the column that was moved.

Position As Long

This parameter holds the new position of the column.

This event is useful if you want to synchronize some other user-interface element to the columns on a grid, or
to keep track of a column's position. To prevent the user from moving certain columns to certain positions, use
the BeforeMoveColumn event instead.

See Also

VSFlexGrid Control (page 73)

AfterMoveRow Event

Fired after a row is moved by dragging on the ExplorerBar or using the DragRow method.

AfterRowColChange Event · 229

Syntax

Private Sub VSFlexGrid_AfterMoveRow(ByVal Row As Long, Position As Long)

See Also

VSFlexGrid Control (page 73)

AfterRowColChange Event

Fired after the current cell (Row, Col) changes to a different cell.

Syntax

Private Sub VSFlexGrid_AfterRowColChange(ByVal OldRow As Long, ByVal OldCol As Long, ByVal
NewRow As Long, ByVal NewCol As Long)

Remarks

This event is fired after the Row or Col properties change, either as a result of user actions (mouse or
keyboard) or through code.

This event is useful if you want to display additional information about the currently selected row, column, or
cell. To perform validation or prevent certain cells from being selected, use the BeforeRowColChange and
BeforeSelChange events instead.

See Also

VSFlexGrid Control (page 73)

AfterScroll Event

Fired after the control scrolls.

Syntax

Private Sub VSFlexGrid_AfterScroll(ByVal OldTopRow As Long, ByVal OldLeftCol As Long, ByVal
NewTopRow As Long, ByVal NewLeftCol As Long)

Remarks

This event is fired whenever the TopRow or LeftCol properties change, either as a result of user actions
(keyboard or mouse) or through code.

For example, the following code ensures that a cell remains visible while it is being edited:

 Private Sub fg_AfterScroll(ByVal OldTopRow As Long, _
 ByVal OldLeftCol As Long, _
 ByVal NewTopRow As Long, _
 ByVal NewLeftCol As Long)
 If fg.EditWindow <> 0 Then fg.ShowCell fg.Row, fg.Col
 End Sub

You can prevent the user from scrolling the control by handling the BeforeScroll event and setting the Cancel
parameter to True. You can control the visibility of the scrollbars using the ScrollBars property.

See Also

VSFlexGrid Control (page 73)

AfterSelChange Event

Fired after the selected range (RowSel, ColSel) changes.

230 · VSFlexGrid Control

Syntax

Private Sub VSFlexGrid_AfterSelChange(ByVal OldRowSel As Long, ByVal OldColSel As Long, ByVal
NewRowSel As Long, ByVal NewCol As Long)

Remarks

This event is fired after the RowSel or ColSel properties change, either as a result of user actions (mouse or
keyboard) or through code.

This event is useful if you want to display additional information about the current selection. To perform
validation or prevent certain cells from being selected, use the BeforeRowColChange and BeforeSelChange
events instead.

See Also

VSFlexGrid Control (page 73)

AfterSort Event

Fired after a column is sorted by a click on the ExplorerBar.

Syntax

Private Sub VSFlexGrid_AfterSort(ByVal Col As Long, Order As Integer)

Remarks

This event is only fired if the sorting was caused by a click on the ExplorerBar. It is not fired after sorting with
the Sort property.

This event is useful if you want to update user interface elements to reflect the new sorting. Note that the
ExplorerBar property has new settings that cause the sorting order to be displayed automatically as arrow
icons on the header rows.

To prevent certain columns from being sorted, or to alter their default sorting order, use the BeforeSort event
instead.

See Also

VSFlexGrid Control (page 73)

AfterUserFreeze Event

Fired after the user changes the number of frozen rows or columns.

Syntax

Private Sub VSFlexGrid_AfterUserFreeze()

Remarks

This event is fired whenever the FrozenRows or FrozenCols properties change, either as a result of user
action or through code.

The user may change the number of frozen rows and columns by dragging the solid line that divides the frozen
and scrollable areas of the grid, depending on the setting of the AllowUserFreezing property.

This event is useful if you want to synchronize user interface elements with the number of frozen rows or
columns.

See Also

VSFlexGrid Control (page 73)

AfterUserResize Event · 231

AfterUserResize Event

Fired after the user resizes a row or a column.

Syntax

Private Sub VSFlexGrid_AfterUserResize(ByVal Row As Long, ByVal Col As Long)

Remarks

The user may resize rows and columns by dragging the edges of fixed rows and columns, depending on the
setting of the AllowUserResizing property.

The user may also double-click the edges of fixed rows and columns to automatically resize columns to fit the
widest entries, depending on the setting of the AutoSizeMouse property.

If the user resized a row, the Row parameter contains the index of the row that was resized and the Col
parameter contains -1. If the user resized a column, the Col parameter contains the index of the column that
was resized and the Row parameter contains -1.

You may prevent specific rows and columns from being resized using the BeforeUserResize event.

See Also

VSFlexGrid Control (page 73)

BeforeCollapse Event

Fired before the user expands or collapses one or more rows in an outline.

Syntax

Private Sub VSFlexGrid_BeforeCollapse(ByVal Row As Long, ByVal State As Integer, Cancel As Boolean)

Remarks

This event is fired when the grid is in outline mode, before a node is expanded or collapsed either through user
action (clicking on the OutlineBar) or through code (setting the IsCollapsed property or invoking the Outline
method).

The parameters for the BeforeCollapse event are described below:

Row As Long

If a single node is being expanded or collapsed, this parameter has the row number of the node being expanded
or collapsed. If multiple nodes are being collapsed or expanded, this parameter is set to -1.

State As Integer

If a single node is being expanded or collapsed, this parameter has the new state of the node. If multiple node
are being collapsed or expanded, this parameter is set to the new outline level being displayed. Possible node
states are described below.

Cancel As Boolean

Set this parameter to True to prevent the node from being collapsed or expanded.

Possible node states are:

Constant Value Description

FlexOutlineExpanded 0 The node is expanded: all subordinate nodes are
visible.

232 · VSFlexGrid Control

Constant Value Description

FlexOutlineSubtotals 1 The node is partially expanded: subordinates nodes
are visible but collapsed.

FlexOutlineCollapsed 2 The node is collapsed: all subordinate nodes are
hidden.

Single nodes are expanded or collapsed when the user clicks the outline tree (see the OutlineBar property) or
when a new node state is assigned to the IsCollapsed property of a specific row. Multiple nodes are expanded
or collapsed when the user clicks the outline buttons across the top of the outline tree or when the Outline
method is invoked by the host application.

This event is especially useful for building outlines asynchronously. One of the samples provided on the
distribution CD uses this technique to build a directory tree display. Branches are added to the tree when the
user expands each directory. In this case, building the entire tree when the control loads would take too long.

The sample code below creates an outline with five nodes, each of which contains an empty "dummy" child
node. Before a parent node is expanded, the dummy child is removed and five new parent nodes are added,
each with a dummy child. Thus the outline tree is build dynamically and can grow indefinitely.

 Private Sub Form_Load()
 fg.Rows = 1
 fg.Cols = 1
 fg.FixedCols = 0
 fg.ExtendLastCol = True
 fg.OutlineBar = flexOutlineBarSimpleLeaf
 AddNodeGroup 1, 0
 End Sub
 Private Sub fg_BeforeCollapse(ByVal Row As Long, ByVal State As
Integer, Cancel As Boolean)
 If Row < 0 Then Cancel = True: Exit Sub
 If State = flexOutlineCollapsed Then Exit Sub
 If fg.TextMatrix(Row + 1, 0) <> "Dummy" Then Exit Sub
 fg.RemoveItem Row + 1
 AddNodeGroup Row + 1, fg.RowOutlineLevel(Row) + 1
 End Sub
 Sub AddNodeGroup(r&, level&)
 Dim i%
 For i = 1 To 5
 fg.AddItem "Row " & fg.Rows, r
 fg.AddItem "Dummy", r + 1
 fg.IsSubtotal(r) = True
 fg.RowOutlineLevel(r) = level
 fg.IsCollapsed(r) = flexOutlineCollapsed
 r = r + 2
 Next
 End Sub

The control is initialized in the Form_Load event. The OutlineBar property is used to display an outline tree,
and the AddNode routine is called to add a block of five nodes with dummy children.

Before a node is expanded or collapsed, the BeforeCollapse event is fired. If the Row parameter is negative,
the operation is canceled (this happens when the user shift-clicks a node to expand or collapse all nodes at that
level). If the node is being collapsed or the child node is not a dummy, the function exits without further
processing. Otherwise, the dummy is removed and replaced with a new group of collapsed nodes.

See Also

VSFlexGrid Control (page 73)

BeforeDataRefresh Event · 233

BeforeDataRefresh Event

Fired before reading data from the record source.

Syntax

Private Sub VSFlexGrid_BeforeDataRefresh(Cancel As Boolean)

Remarks

This event is fired when the control is bound to a recordset, immediately before a batch of data is loaded.

You may trap this event and prevent the data from being loaded if you wish. You may later force the data to
be loaded by using the DataRefresh method.

See Also

VSFlexGrid Control (page 73)

BeforeEdit Event

Fired before the control enters cell edit mode.

Syntax

Private Sub VSFlexGrid_BeforeEdit(ByVal Row As Long, ByVal Col As Long, Cancel As Boolean)

Remarks

This event is fired before the control enters edit mode and before an editable cell is repainted when it has the
focus. It allows you to prevent editing by setting the Cancel parameter to True, to supply a list of choices for a
combo list with the ComboList property, or to specify an edit mask with the EditMask property.

If the choices or the mask are the same for a whole column, you may set them with the ColComboList and
ColEditMask properties, and you don't need to handle the BeforeEdit event.

The parameters for the BeforeEdit event are described below:

Row As Long, Col As Long

Indicate which cell is about to be edited or repainted.

Cancel As Boolean

Allows you to cancel the editing operation.

Because BeforeEdit is fired before each repaint, it does not guarantee that the control is really about to enter
edit mode. For that, use the StartEdit event instead. If the user starts editing by pressing a key, several events
get fired in the following sequence:

KeyDown 65 ' user pressed the 'a' key (65 = 'A')
BeforeEdit 1 1 ' allows you to cancel the editing
StartEdit 1 1 ' not canceled, edit is about to start
KeyPressEdit 97 ' 'a' key passed to editor (97 = 'a')
KeyUpEdit 65 ' user released the key
KeyDownEdit 13 ' user pressed Enter
ValidateEdit ' allows you to validate the edit
AfterEdit 1 1 ' editing done
BeforeEdit 1 1 ' repainting cell
KeyUp 13 ' user released Enter key

See Also

VSFlexGrid Control (page 73)

234 · VSFlexGrid Control

BeforeMouseDown Event

Fired before the control processes the MouseDown event.

Syntax

Private Sub VSFlexGrid_BeforeMouseDown(ByVal Button As Integer, ByVal Shift As Integer, ByVal X As
Single, ByVal Y As Single, Cancel As Boolean)

Remarks

The parameters for this event are identical to the ones in the MouseDown event, plus an additional Cancel
parameter that allows you to prevent the default processing.

This event is useful if you want to process some mouse actions yourself, instead of relying on the control's
default processing.

For example, the following routine detects shift-clicks and uses them to build and save a list of selected rows.
Then it initiates a drag operation using Visual Basic's Drag method. The default mouse processing is canceled
so the control does not modify the selection as the user drags the mouse.

 Private Sub fa_BeforeMouseDown(ByVal Button As Integer, ByVal Shift
As Integer, _
ByVal X As Single, ByVal Y As Single, Cancel As Boolean)
 ' use shift to drag (ctrl selects)
 If Shift <> 1 Then Exit Sub
 ' cancel remaining mouse events
 Cancel = True
 ' build a list of what we'll be dragging
 Dim i As Long
 fa.Tag = ""
 For i = 0 To fa.SelectedRows - 1
 fa.Tag = fa.Tag & vbCrLf & vbTab & fa.Cell(flexcpText,
fa.SelectedRow(i), 0)
 Next
 ' start dragging
 fa.Drag
 End Sub

See Also

VSFlexGrid Control (page 73)

BeforeMoveColumn Event

Fired before a column is moved by dragging on the ExplorerBar.

Syntax

Private Sub VSFlexGrid_BeforeMoveColumn(ByVal Col As Long, Position As Long)

Remarks

This event is only fired if the column was moved by dragging it into the ExplorerBar. It is not fired after before
moving with the ColPosition property.

This event is useful when you want to prevent the user from moving certain columns to invalid positions. You
may do so by modifying the value of the Position parameter.

For example, the following code prevents Column 1 from being moved to another position and other columns
from being moved to its position:

 Private Sub VSFlexGrid1_BeforeMoveColumn(ByVal Col As Long,
Position As Long)

BeforeMoveRow Event · 235

 If Col = 1 Then Position = 1
 If Col <> 1 And Position = 1 Then Position = Col
 End Sub

See Also

VSFlexGrid Control (page 73)

BeforeMoveRow Event

Fired before a row is moved by dragging on the ExplorerBar or using the DragRow method.

Syntax

Private Sub VSFlexGrid_BeforeMoveRow(ByVal Row As Long, Position As Long)

See Also

VSFlexGrid Control (page 73)

BeforePageBreak Event

Fired while printing the control to control page breaks.

Syntax

Private Sub VSFlexGrid_BeforePageBreak(ByVal Row As Long, BreakOK As Boolean)

Remarks

This event is fired while the control is being printed to allow control over page breaks.

Set the BreakOK parameter to True to indicate that row number Row should be allowed to print at the top of a
page, or set it to False to indicate otherwise. For example, you would set BreakOK to True if Row is a subtotal
or a heading row.

The control may be printed with the PrintGrid method or with a VSPrinter control. The advantage of using
the VSPrinter control is that it provides print previewing, the ability to integrate many grids and other
graphical elements on a single document, and complete control over the printer. The VSPrinter control is
available from ComponentOne as a separate product.

See Also

VSFlexGrid Control (page 73)

BeforeRowColChange Event

Fired before the current cell (Row, Col) changes to a different cell.

Syntax

Private Sub VSFlexGrid_BeforeRowColChange(ByVal OldRow As Long, ByVal OldCol As Long, ByVal
NewRow As Long, ByVal NewCol As Long, Cancel As Boolean)

Remarks

This event gets fired before the Row and Col properties change, either as a result of user actions or through
code. It allows you to prevent the selection of certain cells, thus creating "protected" ranges on a grid.

BeforeRowColChange It is fired only when the Row and Col property are about to change. To prevent the
extended selection of a range, you also need to handle the BeforeSelChange event.

236 · VSFlexGrid Control

For example, the following code creates a protected range with a green background and prevents the user from
selecting any cells on the protected range and from extending any selections into the protected area:

 ' highlight protected range
 Private Sub Form_Load()
 fg.Cell(flexcpBackColor, 2, 2, 8, 4) = RGB(200, 250, 200)
 End Sub
 ' cancel if new cell is in protected area
 Private Sub fg_BeforeRowColChange(ByVal OldRow As Long, ByVal
OldCol As Long, _
 ByVal NewRow As Long, ByVal
NewCol As Long, Cancel As Boolean)
 If NewRow >= 2 And NewRow <= 8 And NewCol >= 2 And NewCol <= 4
Then Cancel = True
 End Sub
 ' cancel if new selection is on protected area
 Private Sub fg_BeforeSelChange(ByVal OldRowSel As Long, ByVal
OldColSel As Long, _
 ByVal NewRowSel As Long, ByVal
NewColSel As Long, Cancel As Boolean)
 If (fg.Row < 2 And NewRowSel < 2) Or (fg.Col < 2 And NewColSel
< 2) Then Exit Sub
 If (fg.Row > 8 And NewRowSel > 8) Or (fg.Col > 4 And NewColSel
> 4) Then Exit Sub
 Cancel = True
 End Sub

See Also

VSFlexGrid Control (page 73)

BeforeScroll Event

Fired before the control scrolls.

Syntax

Private Sub VSFlexGrid_BeforeScroll(ByVal OldTopRow As Long, ByVal OldLeftCol As Long, ByVal
NewTopRow As Long, ByVal NewLeftCol As Long, Cancel As Boolean)

Remarks

This event allows you to prevent the user from scrolling the grid while an operation is being performed on the
current selection.

For example, the code below prevents the user from scrolling the grid vertically while a cell is being edited (it
allows horizontal scrolling):

 Private Sub fg_BeforeScroll(ByVal OldTopRow As Long, ByVal
OldLeftCol As Long, _
 ByVal NewTopRow As Long, ByVal
NewLeftCol As Long, Cancel As Boolean)
 If fg.EditWindow <> 0 And OldTopRow <> NewTopRow Then Cancel =
True
 End Sub

See Also

VSFlexGrid Control (page 73)

BeforeScrollTip Event

Fired before a scroll tip is shown so you can set the ScrollTipText property.

BeforeSelChange Event · 237

Syntax

Private Sub VSFlexGrid_BeforeScrollTip(ByVal Row As Long)

Remarks

This event is fired only if the ScrollTips property is set to True. It allows you to set the ScrollTipText property
to a descriptive string for the given row.

For example the following code displays a tool tip as the user drags the vertical scroll bar thumb. The tooltip
displays information about the new top row that will be visible when the user stops scrolling:

 Private Sub Form_Load()
 fg.ScrollTips = True
 fg.Rows = 1
 While fg.Rows < 200
 fg.AddItem vbTab & fg.Rows
 Wend
 End Sub
 Private Sub fg_BeforeScrollTip(ByVal Row As Long)
 fg.ScrollTipText = "New Top Row: " & fg.TextMatrix(Row, 1)
 End Sub

See Also

VSFlexGrid Control (page 73)

BeforeSelChange Event

Fired before the selected range (RowSel, ColSel) changes.

Syntax

Private Sub VSFlexGrid_BeforeSelChange(ByVal OldRowSel As Long, ByVal OldColSel As Long, ByVal
NewRowSel As Long, ByVal NewColSel As Long, Cancel As Boolean)

Remarks

This event is fired before the RowSel and ColSel properties change, either as a result of user actions or
through code. It allows you to prevent the selection of certain cells, thus creating "protected" ranges on a grid.

To prevent the selection of a range, you also need to handle the BeforeRowColChange event, which is fired
before the Row and Col properties change.

For example, the following code creates a protected range with a green background and prevents the user from
selecting any cells on the protected range and from extending any selections into the protected area:

 ' highlight protected range
 Private Sub Form_Load()
 fg.Cell(flexcpBackColor, 2, 2, 8, 4) = RGB(200, 250, 200)
 End Sub
 ' cancel if new cell is in protected area
 Private Sub fg_BeforeRowColChange(ByVal OldRow As Long, ByVal
OldCol As Long, _
 ByVal NewRow As Long, ByVal
NewCol As Long, Cancel As Boolean)
 If NewRow >= 2 And NewRow <= 8 And NewCol >= 2 And NewCol <= 4
Then Cancel = True
 End Sub
 ' cancel if new selection is on protected area
 Private Sub fg_BeforeSelChange(ByVal OldRowSel As Long, ByVal
OldColSel As Long, _
 ByVal NewRowSel As Long, ByVal
NewColSel As Long, Cancel As Boolean)

238 · VSFlexGrid Control

 If (fg.Row < 2 And NewRowSel < 2) Or (fg.Col < 2 And NewColSel
< 2) Then Exit Sub
 If (fg.Row > 8 And NewRowSel > 8) Or (fg.Col > 4 And NewColSel
> 4) Then Exit Sub
 Cancel = True
 End Sub

See Also

VSFlexGrid Control (page 73)

BeforeSort Event

Fired before a column is sorted by a click on the ExplorerBar.

Syntax

Private Sub VSFlexGrid_BeforeSort(ByVal Col As Long, Order As Integer)

Remarks

This event is only fired if the sorting was caused by a click on the ExplorerBar. It is not fired before sorting
with the Sort property.

This event is useful when you want to prevent the user from sorting certain columns or to specify custom
sorting orders for specific columns. You may do so by modifying the value of the Order parameter.

See Also

VSFlexGrid Control (page 73)

BeforeUserResize Event

Fired before the user starts resizing a row or column, allows cancel.

Syntax

Private Sub VSFlexGrid_BeforeUserResize(ByVal Row As Long, ByVal Col As Long, Cancel As Boolean)

Remarks

The user may resize rows and columns using the mouse, depending on the setting of the AllowUserResizing
property.

If the user is about to start resizing a row, the Row parameter contains the index of the row to be resized and
the Col parameter contains -1. If the user is about to start resizing a column, the Col parameter contains the
index of the column to be resized and the Row parameter contains -1.

You may prevent the user from resizing specific rows and columns by setting the Cancel parameter to True.

For example, the code below prevents the user from resizing columns 0 and 1:

 Private Sub Form_Load()
 fg.AllowUserResizing = flexResizeColumns
 End Sub

 Private Sub fg_BeforeUserResize(ByVal Row As Long, ByVal Col As
Long, Cancel As Boolean)
 If Col = 0 Or Col = 1 Then
 Cancel = True
 End If
 End Sub

CellButtonClick Event · 239

See Also

VSFlexGrid Control (page 73)

CellButtonClick Event

Fired after the user clicks a cell button.

Syntax

Private Sub VSFlexGrid_CellButtonClick(ByVal Row As Long, ByVal Col As Long)

Remarks

This event is fired when the user clicks an edit button on a cell. Typically, this event is used to pop up a custom
editor for the cell (e.g. dialogs for selecting colors, dates, files, pictures, and so on.).

By default, cell edit buttons are displayed on the right side of a cell, with an ellipsis caption ("..."). They are
similar to the buttons displayed in the Visual Basic Property window next to picture properties. You may
customize their appearance by assigning a picture to the CellButtonPicture property.

To create an edit button on a cell, you must set the Editable property to True and set the ComboList (or
ColComboList) property to an ellipsis.

For example, the following code assigns edit buttons to the first column of a grid, then traps the
CellButtonClick event to show a color-pick dialog and assign the selected color to the cell background:

 Private Sub Form_Load()
 fg.Editable = flexEDKbdMouse
 fg.ColComboList(1) = "..."
 End Sub
 Private Sub fg_CellButtonClick(ByVal Row As Long, ByVal Col As
Long)
 CommonDialog1.ShowColor
 fg.Cell(flexcpBackColor, Row, Col) = CommonDialog1.Color
 End Sub

See Also

VSFlexGrid Control (page 73)

CellChanged Event

Fired after a cell's contents change.

Syntax

Private Sub VSFlexGrid_CellChanged(ByVal Row As Long, ByVal Col As Long)

Remarks

This event allows you to perform some processing whenever the contents of a cell change, regardless of how
they were changed (e.g. user typed data into the cell, data got loaded from a database, or data was assigned to
the grid through code). This is useful to provide conditional formatting and dynamic data summaries (that get
updated automatically whenever the data changes).

For example, the following code formats negative values in bold red:

 Private Sub Form_Load()
 Dim r&, c&
 fg.Editable = flexEDKbdMouse
 fg.ColFormat(-1) = "#,###.##"
 For r = fg.FixedRows To fg.Rows - 1
 For c = fg.FixedCols To fg.Cols - 1

240 · VSFlexGrid Control

 fg.TextMatrix(r, c) = Rnd * 1000 - 500
 Next
 Next
 End Sub

 Private Sub fg_CellChanged(ByVal Row As Long, ByVal Col As Long)
 If fg.TextMatrix(Row, Col) < 0 Then
 fg.Cell(flexcpForeColor, Row, Col) = RGB(200, 100, 100)
 fg.Cell(flexcpFontBold, Row, Col) = RGB(200, 100, 100)
 Else
 fg.Cell(flexcpCustomFormat, Row, Col) = False
 End If
 End Sub

See Also

VSFlexGrid Control (page 73)

ChangeEdit Event

Fired after the text in the editor has changed.

Syntax

Private Sub VSFlexGrid_ChangeEdit()

Remarks

This event is fired while in edit mode, whenever the contents of the editor change or a new selection is made
from a drop-down list.

You may use this event to provide help while the user browses the contents of a list. The current text being
edited can be retrieved using the EditText property. For example:

 Private Sub Form_Load()
 fg.Editable = flexEDKbdMouse
 fg.ColComboList(1) = "Gold|Copper|Silver|Steel|Iron"
 End Sub

 Private Sub fg_ChangeEdit()
 Debug.Print "The current entry begins with " &
Left(fg.EditText, 1)
 End Sub

See Also

VSFlexGrid Control (page 73)

ComboCloseUp Event

Fired before the built-in combobox closes up.

Syntax

Private Sub VSFlexGrid_ComboCloseUp (Row As Long, Col As Long, FinishEdit As Boolean)

Remarks

The parameters for the ComboCloseUp event are described below:

Row As Long

Col As Long

FinishEdit As Boolean

ComboDropDown Event · 241

See Also

VSFlexGrid Control (page 73)

ComboDropDown Event

Fired before the built-in combobox drops down.

Syntax

Private Sub VSFlexGrid_ComboDropDown (Row As Long, Col As Long)

Remarks

The parameters for the ComboDropDown event are described below:

Row As Long

Col As Long

See Also

VSFlexGrid Control (page 73)

Compare Event

Fired when the Sort property is set to flexSortCustom, to allow custom comparison of rows.

Syntax

Private Sub VSFlexGrid_Compare(ByVal Row1 As Long, ByVal Row2 As Long, Cmp As Integer)

Remarks

When the Sort property is set to flexSortCustom, this event is fired several times, to compare pairs of rows.

The event handler should compare rows Row1 and Row2 and return the result in the Cmp parameter. The result
should be:

Value Description

-1 If Row1 should appear before Row2.

0 If the rows are equal (as far as sorting goes).

+1 If Row1 should appear after Row2.

Note that custom sorts are orders of magnitude slower than the built-in sorts, so you should avoid using them
unless your data sets are small. Usually, there are good alternatives to a custom sort:

If you are sorting dates, set the ColDataType property to flexDTDate and the generic sorting settings will sort
the dates correctly.

If you are sorting international strings, the generic and string settings will sort the value correctly.

If you want to sort based on arbitrary criteria (for example, "Urgent", "High", "Medium", "Low"), use a hidden
column with numerical values that correspond to the criteria you are using.

See Also

VSFlexGrid Control (page 73)

242 · VSFlexGrid Control

DrawCell Event

Fired when the OwnerDraw property is set to allow custom cell drawing.

Syntax

Private Sub VSFlexGrid_DrawCell(ByVal hDC As Long, ByVal Row As Long, ByVal Col As Long, ByVal
Left As Long, ByVal Top As Long, ByVal Right As Long, ByVal Bottom As Long, Done As Boolean)

Remarks

This event is fired if the OwnerDraw property is set to a non-zero value, to allow for custom painting on
selected cells.

The parameters for the DrawCell event are described below:

hDC As Long

This parameter contains a handle to the control's device context. The hDC parameter is required by all
Windows GDI calls.

Row, Col As Long

These parameters define the cell that is about to be drawn.

Left, Top, Right, Bottom As Long

These parameters define the rectangle that contains the cell. The coordinates are given in pixels, so they can be
used directly in the GDI calls.

Done As Boolean

This parameter should be set to True to indicate that the event did, in fact, handle the drawing. Set it to False
to indicate that you don't want to paint this particular cell and the control should handle it instead.

Note

Owner-drawn cells are a fairly advanced feature that requires knowledge of the Windows GDI calls. If you
decide to use this feature, our technical support technicians will probably not be able to help you with
problems you may encounter. Efficient painting is also fundamental to the perceived speed of your
application, so use this feature only if you really need it, and make sure your own painting code is as fast as
possible.

The distribution CD includes sample projects that show how you can use OwnerDraw property both in Visual
Basic and in Visual C++. Look for the OwnerDraw and PropPage demos.

See Also

VSFlexGrid Control (page 73)

EndAutoSearch Event

Fired when the grid leaves AutoSearch mode.

Syntax

Event EndAutoSearch()

See Also

VSFlexGrid Control (page 73)

EnterCell Event · 243

EnterCell Event

Fired when a cell becomes active.

Syntax

Private Sub VSFlexGrid_EnterCell()

Remarks

This event is fired after a cell becomes current, either as a result of mouse/keyboard action, or when the
current selection is modified programmatically.

See Also

VSFlexGrid Control (page 73)

Error Event

Fired after a data-access error.

Syntax

Private Sub VSFlexGrid_Error(ByVal ErrorCode As Long, ShowMsgBox As Boolean)

Remarks

This event is fired after a non-fatal data-access error. Normally, this error indicates that an update to the
database failed because of the data was of the wrong type or because the value entered would violate database
integrity rules.

The ErrorCode parameter can have the following values:

Error Code Description

129 Recordset can't be updated. The record may be locked, or the recordset
may be a read-only recordset.

130 Recordset field can't take this value. The value entered is of the wrong
type or would violate database integrity rules.

If you do not handle this event, the control will display a message box informing the user that an error
occurred. Execution will continue normally and the control will display the value as retrieved from the
database.

You may trap this event to suppress the dialog box, optionally replacing it with a custom one.

See Also

VSFlexGrid Control (page 73)

FilterData Event

Fired after a value is read and before a value is written to a recordset to allow custom formatting.

Syntax

Private Sub VSFlexGrid_FilterData(ByVal Row As Long, ByVal Col As Long, Value As String, ByVal
SavingToDB As Boolean, WantThisCol As Boolean)

244 · VSFlexGrid Control

Remarks

This event is fired whenever data is read from or written to a bound recordset. It allows you to modify the data
before it is committed to the grid (when reading) or to the recordset (when writing).

This event is mostly useful when the data is stored in the database using an encoded format that is not ideal for
displaying and editing. For example, many databases store dates as a string of digits (usually 6 or 8), without
any separators. You could use the FilterData event to insert the separators at the proper places before
displaying the data, and to remove them again before writing them back into the database.

The parameters for the FilterData event are described below:

Row As Long, Col As Long

Address of the cell whose value is about to be read from or written to the bound recordset.

Value As String

Value just read from or about to be written to the bound recordset.

SavingToDB As Boolean

If True, the value was read from the grid and is about to be written to the bound recordset. If False, the value
was read from the bound recordset and is about to be written to the grid.

WantThisCol As Boolean

This value is set to False by default. If you set it to True, the control will keep firing the FilterData event for
this column. If you don't set it to True, the event will no longer be fired for this column until the grid is bound
to a new recordset or the current recordset is refreshed. The WantThisCol parameter is important because the
FilterData event is relatively slow. The WantThisCol parameter allows the application to establish which
columns need filtering, thus improving performance.

For example, suppose you are dealing with a recordset that contains two date fields called Birth and Hired.
These fields contain dates encoded as six-digit strings (e.g. July 4th, 1962 is encoded as "070462") which you
would like to display in the "Medium Date" format. The code below shows how you can accomplish this using
the FilterData event:

Private Sub fg_FilterData(ByVal Row As Long, ByVal Col As Long, Data As
String, ByVal SavingToDB As Boolean, WantThisCol As Boolean)

 ' we are interested only in "Birth" and "Hired" fields
 If fg.ColKey(Col) <> "Birth" And fg.ColKey(Col) <> "Hired" Then
Exit Sub

 ' keep getting this column
 WantThisCol = True

 ' format data going out to the recordset (Date -> "mmddyy")
 Dim dt As Date
 If SavingToDB Then
 dt = Data
 Data = Format(dt, "mmddyy")

 ' format data coming in from the recordset ("mmddyy" -> Date)
 Else
 If Len(Data) = 6 Then
 dt = DateSerial(Right(Data, 2), Left(Data, 2),
Mid(Data, 3, 2))
 Data = Format(dt, "Medium Date")
 End If
 End If
 End Sub

GetHeaderRow Event · 245

Note

Be careful when writing FilterData code to avoid corrupting your database. The FilterData code should
perform symmetrical translations on the data. In other words, if value X gets translated into value Y when it is
read from the database, then value Y should be translated back into X when it is written out to the database.

See Also

VSFlexGrid Control (page 73)

GetHeaderRow Event

Fired while printing the control to set repeating header rows.

Syntax

Private Sub VSFlexGrid_GetHeaderRow(ByVal Row As Long, HeaderRow As Long)

Remarks

This event is fired while the control is being printed, to create a headers at the top of each page.

While printing, the GetHeaderRow event is fired at the beginning of each page (except the first) and you can
return the number of a row that should be used as a header on each page. This is especially useful for printing
complex reports that require control over page breaks.

The parameters for the GetHeaderRow event are described below:

Row As Long

This parameter contains the number of the row that will be the first on a page.

HeaderRow As Long

This parameter is initially set to -1, meaning no heading row is needed. If you want a header row on the page,
set HeaderRow to the number of a row to be used as the header.

The control may be printed with the PrintGrid method or with a VSPrinter control. The advantage of using
the VSPrinter control is that it provides print previewing, the ability to integrate many grids and other
graphical elements on a single document, and complete control over the printer. The VSPrinter control is
available from ComponentOne as a separate product.

See Also

VSFlexGrid Control (page 73)

KeyDownEdit Event

Fired when the user presses a key in cell-editing mode.

Syntax

Private Sub VSFlexGrid_KeyDownEdit(ByVal Row As Long, ByVal Col As Long, KeyCode As Integer,
ByVal Shift As Integer)

Remarks

This event is similar to the standard KeyDown event, except it is fired while the grid is in edit mode.

The editor has three modes: text, drop-down combo, or drop-down list. The mode used is determined by the
ComboList and ColComboList properties.

246 · VSFlexGrid Control

While editing with the text editor or with a drop-down combo, you may set or retrieve the contents of the
editor using the EditText property. You may manipulate the contents of the editor using the EditSelStart,
EditSelLength, and EditSelText properties.

While editing with drop-down lists or drop-down combos, you may set or retrieve the contents of the editor
using the ComboItem, ComboIndex, ComboCount, and ComboData properties.

See Also

VSFlexGrid Control (page 73)

KeyPressEdit Event

Fired when the user presses a key in cell-editing mode.

Syntax

Private Sub VSFlexGrid_KeyPressEdit(ByVal Row As Long, ByVal Col As Long, KeyAscii As Integer)

Remarks

This event is similar to the standard KeyPress event, except it is fired while the grid is in edit mode.

The editor has three modes: text, drop-down combo, or drop-down list. The mode used is determined by the
ComboList and ColComboList properties.

While editing with the text editor or with a drop-down combo, you may set or retrieve the contents of the
editor using the EditText property. You may manipulate the contents of the editor using the EditSelStart,
EditSelLength, and EditSelText properties.

While editing with drop-down lists or drop-down combos, you may set or retrieve the contents of the editor
using the ComboItem, ComboIndex, ComboCount, and ComboData properties.

The main use for this event is to filter keys as they are typed while the control is in cell-editing mode. For
example, the code below shows how you can convert input to upper-case or restrict data entry to numeric
values only.

Sub fg_KeyPressEdit(Row As Long, Col As Long, KeyAscii As Integer)

 Select Case Col
 ' column 1 entries are upper case
 ' so use VB's UCase function to convert the character

 Case 1: KeyAscii = Asc(UCase$(Chr$(KeyAscii)))
 ' column 2 entries are numeric
 ' so set KeyAscii to 0 if it is not a digit

 Case 2: If KeyAscii < vbKey0 Or KeyAscii > vbKey9 Then KeyAscii = 0

 End Select
End Sub

Note that you could also restrict the input of non-digits using the EditMask or ColEditMask properties.

See Also

VSFlexGrid Control (page 73)

KeyUpEdit Event

Fired when the user presses a key in cell-editing mode.

LeaveCell Event · 247

Syntax

Private Sub VSFlexGrid_KeyUpEdit(ByVal Row As Long, ByVal Col As Long, KeyCode As Integer, ByVal
Shift As Integer)

Remarks

This event is similar to the standard KeyUp event, except it is fired while the grid is in edit mode.

The editor has three modes: text, drop-down combo, or drop-down list. The mode used is determined by the
ComboList and ColComboList properties.

While editing with the text editor or with a drop-down combo, you may set or retrieve the contents of the
editor using the EditText property. You may manipulate the contents of the editor using the EditSelStart,
EditSelLength, and EditSelText properties.

While editing with drop-down lists or drop-down combos, you may set or retrieve the contents of the editor
using the ComboItem, ComboIndex, ComboCount, and ComboData properties.

See Also

VSFlexGrid Control (page 73)

LeaveCell Event

Fired before the current cell changes to a different cell.

Syntax

Private Sub VSFlexGrid_LeaveCell()

Remarks

This event is fired before the cursor leaves the current cell, either as a result of mouse/keyboard action, or
when the current selection is modified programmatically.

See Also

VSFlexGrid Control (page 73)

OLECompleteDrag Event

Fired after a drop to inform the source component that a drag action was either performed or canceled.

Syntax

Private Sub VSFlexGrid_OLECompleteDrag(Effect As Long)

Remarks

The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation. This event
informs the source component of the action that was performed when the object was dropped onto the target
component. The target sets this value through the effect parameter of the OLEDragDrop event. Based on this
information, the source can then determine the appropriate action it needs to take. For example, if the object
was moved into the target (vbDropEffectMove), the source should delete the object from itself after the move.

The parameter for the OLECompleteDrag is a long integer set by the target object identifying the action that
has been performed, thus allowing the source to take appropriate action if the component was moved (such as
the source deleting data if it is moved from one component to another).

248 · VSFlexGrid Control

The possible values are the following:

Constant Value Description

vbDropEffectNone 0 Drop operation was cancelled.

vbDropEffectCopy 1 Drop results in a copy from the source to the Target.
The original data remains.

vbDropEffectMove 2 Drop moves the data from the source to the target.
The original data should be deleted.

For an example of implementing OLE drag and drop with the VSFlexGrid control, see the OLE Drag and
Drop Demo.

See Also

VSFlexGrid Control (page 73)

OLEDragDrop Event

Fired when a source component is dropped onto a target component.

Syntax

Private Sub VSFlexGrid_OLEDragDrop(Data As VSDataObject, Effect As Long, ByVal Button As Integer,
ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)

Remarks

The parameters for the OLEDragDrop event are described below:

Data As vsDataObject

An object containing formats that the source will provide and (possibly) the data for those formats. If no data
is contained in the object, it is provided when the control calls the GetData method. The SetData and Clear
methods cannot be used here.

Effect As Long

A long integer set by the target component identifying the action that has been performed (if any), thus
allowing the source to take appropriate action if the component was moved (such as the source deleting the
data). The possible values are:

Constant Value Description

vbDropEffectNone 0 Drop operation was cancelled.

vbDropEffectCopy 1 Drop results in a copy from the source to the target.
The original data remains.

vbDropEffectMove 2 Drop moves the data from the source to the target. The
original data should be deleted.

Button As Integer

An integer which acts as a bit field corresponding to the state of a mouse button when it is depressed. The left
button is bit 0 (vb Left Button), the right button is bit 1 (vb Right Button), and the middle button is bit 2 (vb

OLEDragOver Event · 249

Middle Button). These bits correspond to the values 1, 2, and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set, indicating that some, all, or none of the buttons are
depressed.

Shift As Integer

An integer which acts as a bit field corresponding to the state of the SHIFT, CTRL, and ALT keys when they
are depressed. The SHIFT key is bit 0, the CTRL key is bit 1, and the ALT key is bit 2. These bits correspond
to the values 1 (vb Shift Mask), 2 (vb Ctrl Mask), and 4 (vb Alt Mask), respectively. The shift parameter
indicates the state of these keys; some, all, or none of the bits can be set, indicating that some, all, or none of
the keys are depressed. For example, if both the CTRL and ALT keys were depressed, the value of shift would
be 6.

X, Y As Single

These parameters specify the current location of the mouse pointer, in twips.

For an example of implementing OLE drag and drop with the VSFlexGrid control, see the OLE Drag and
Drop Demo.

See Also

VSFlexGrid Control (page 73)

OLEDragOver Event

Fired when a component is dragged over another.

Syntax

Private Sub VSFlexGrid_OLEDragOver(Data As VSDataObject, Effect As Long, ByVal Button As Integer,
ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single, State As Integer)

Remarks

The parameters for the OLEDragOver event are described below:

Data As VSDataObject

An object containing formats that the source will provide and (possibly) the data for those formats. If no data
is contained in the object, it is provided when the control calls the GetData method. The SetData and Clear
methods cannot be used here.

Effect As Long

A long integer initially set by the source object identifying all effects it supports. This parameter must be
correctly set by the target component during this event. The value of effect is determined by logically ordering
together all active effects. The target component should check these effects and other parameters to determine
which actions are appropriate for it, and then set this parameter to one of the allowable effects (as specified by
the source) to specify which actions will be performed if the user drops the selection on the component. The
possible values are:

Constant Value Description

VbDropEffectNone 0 Drop operation was cancelled.

VbDropEffectCopy 1 Drop results in a copy from the source to the target.
The original data remains.

VbDropEffectMove 2 Drop moves the data from the source to the target. The
original data should be deleted.

250 · VSFlexGrid Control

Button As Integer

An integer which acts as a bit field corresponding to the state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are depressed.

Shift As Integer

An integer which acts as a bit field corresponding to the state of the SHIFT, CTRL, and ALT keys when they
are depressed. The SHIFT key is bit 0, the CTRL key is bit 1, and the ALT key is bit 2. These bits correspond
to the values 1, 2, and 4, respectively. The shift parameter indicates the state of these keys; some, all, or none
of the bits can be set, indicating that some, all, or none of the keys are depressed. For example, if both the
CTRL and ALT keys are depressed, the value of shift would be 6.

X, Y As Single

These parameters specify the current location of the mouse pointer, in twips.

State As Integer

An integer that corresponds to the transition state of the control being dragged in relation to a target form or
control. The possible values are:

Constant Value Description

vbEnter 0 Source component is being dragged within the range of a
target.

vbLeave 1 Source component is being dragged out of the range of a
target.

vbOver 2 Source component has moved from one position in the target
to another.

For an example of implementing OLE drag and drop with the VSFlexGrid control, see the OLE Drag and
Drop Demo.

See Also

VSFlexGrid Control (page 73)

OLEGiveFeedback Event

Fired after every OLEDragOver event to allow the source component to provide visual feedback to the user.

Syntax

Private Sub VSFlexGrid_OLEGiveFeedback(Effect As Long, DefaultCursors As Boolean)

Remarks

The parameters for the OLEGiveFeedback event are described below:

Effect As Long

A long integer set by the target component in the OLEDragOver event specifying the action to be performed if
the user drops the selection on it. This allows the source to take the appropriate action (such as giving visual
feedback).

OLESetCustomDataObject Event · 251

The possible values are:

Constant Value Description

vbDropEffectNone 0 Drop operation was cancelled.

vbDropEffectCopy 1 Drop results in a copy from the source to the target.
The original data remains.

vbDropEffectMove 2 Drop moves the data from the source to the target.
The original data should be deleted.

DefaultCursors As Boolean

A boolean value which determines whether Visual Basic uses the default or a user-defined mouse cursor. If
you set this parameter to False, the mouse cursor must be set with the MousePointer property of the Screen
object.

For an example of implementing OLE drag and drop with the VSFlexGrid control, see the OLE Drag and
Drop Demo.

See Also

VSFlexGrid Control (page 73)

OLESetCustomDataObject Event

Fired after an OLE drag operation is started (manually or automatically), allows you to provide a custom
DataObject.

Syntax

Private Sub VSFlexGrid_OLESetCustomDataObject (CustomDataObject)

See Also

VSFlexGrid Control (page 73)

OLESetData Event

Fired on the source component when a target component performs the GetData method on the source’s
DataObject object.

Syntax

Private Sub VSFlexGrid_OLESetData(Data As VSDataObject, DataFormat As Integer)

Remarks

In certain cases, you may wish to defer loading data into the DataObject object of a source component to save
time, especially if the source component supports many formats. This event allows the source to respond to
only one request for a given format of data. When this event is called, the source should check the format
parameter to determine what needs to be loaded and then perform the SetData method on the DataObject
object to load the data which is then passed back to the target component.

252 · VSFlexGrid Control

The parameters for the OLESetData event are described below:

Data As vsDataObject

An object in which to place the requested data. The component calls the SetData method to load the requested
format.

DataFormat As Integer

An integer specifying the format of the data that the target component is requesting. The source component
uses this value to determine what to load into the DataObject object.

For an example of implementing OLE drag and drop with the VSFlexGrid control, see the OLE Drag and
Drop Demo.

See Also

VSFlexGrid Control (page 73)

OLEStartDrag Event

Fired after an OLE drag operation is started (manually or automatically).

Syntax

Private Sub VSFlexGrid_OLEStartDrag(Data As VSDataObject, AllowedEffects As Long)

Remarks

This event is fired when the OleDrag method is invoked, or when the OleDragMode property is set to
flexOleDragAutomatic and the user initiates an OLE drag/drop operation with the mouse.

This event specifies the data formats and drop effects that the control supports (by default, a string containing
the current selection). It can also be used to insert data into the vsDataObject object.

The parameters for the OLEStartDrag event are described below:

Data As vsDataObject

An object containing formats that the source will provide. You may provide the values for this parameter in
this event.

AllowedEffects As Long

A long integer containing the effects that the source component supports. The possible values are:

Constant Value Description

vbDropEffectNone 0 Drop operation was cancelled.

vbDropEffectCopy 1 Drop results in a copy from the source to the target. The
original data remains.

vbDropEffectMove 2 Drop moves the data from the source to the target. The
original data should be deleted.

For an example of implementing OLE drag and drop with the VSFlexGrid control, see the OLE Drag and
Drop Demo.

See Also

VSFlexGrid Control (page 73)

RowColChange Event · 253

RowColChange Event

Fired when the current cell (Row, Col) changes to a different cell.

Syntax

Private Sub VSFlexGrid_RowColChange()

Remarks

RowColChange is fired when the Row or Col properties change, either as a result of user actions (mouse or
keyboard) or through code. It is not fired when the selection changes (RowSel or ColSel properties) but the
active cell (Row, Col) remains the same. In this case, the SelChange event is fired instead.

See Also

VSFlexGrid Control (page 73)

SelChange Event

Fired after the selected range (RowSel, ColSel) changes.

Syntax

Private Sub VSFlexGrid_SelChange()

Remarks

SelChange is fired after the Row, Col, RowSel or ColSel properties change, either as a result of user actions
(mouse or keyboard) or through code. This event is also fired while the user extends the selection with the
mouse.

The example below prints the coordinates of the current selection to the debug window when the selection
changes:

 Private Sub fg_SelChange()

 Debug.Print fg.Row & ", " & fg.Col & ", " & fg.RowSel & ", " &
fg.ColSel

 End Sub

See Also

VSFlexGrid Control (page 73)

SetupEditStyle Event

Fired before the EditWindow is created, used to modify window styles.

Syntax

Private Sub VSFlexGrid_SetupEditStyle (Row As Long, Col As Long, IsCombo As Boolean, Style As Long,
StyleEx As Long)

Remarks

The parameters for the SetupEditStyle event are described below:

Row As Long

Col As Long

IsCombo As Boolean

254 · VSFlexGrid Control

Style As Long

StyleEx As Long

See Also

VSFlexGrid Control (page 73)

SetupEditWindow Event

Fired after the EditWindow has been created and before it is displayed.

Syntax

Private Sub VSFlexGrid_SetupEditWindow (Row As Long, Col As Long, EditWindow As Long, IsCombo As
Boolean)

Remarks

The parameters for the SetupEditWindow event are described below:

Row As Long

Col As Long

EditWindow As Long

IsCombo As Boolean

See Also

VSFlexGrid Control (page 73)

StartAutoSearch Event

Fired when the grid enters AutoSearch mode.

Syntax

Event StartAutoSearch()

See Also

VSFlexGrid Control (page 73)

StartEdit Event

Fired when the control enters cell edit mode (after BeforeEdit).

Syntax

Private Sub VSFlexGrid_StartEdit(ByVal Row As Long, ByVal Col As Long, Cancel As Boolean)

Remarks

This event is fired before the control enters edit mode. It allows you to prevent editing by setting the Cancel
parameter to True, to supply a list of choices for a combo list with the ComboList property, or to specify an
edit mask with the EditMask property.

If the choices or the mask are the same for a whole column, you may set them with the ColComboList and
ColEditMask properties, and you don't need to handle the StartEdit event.

StartPage Event · 255

The parameters for the StartEdit event are described below:

Row As Long, Col As Long

Indicate which cell is about to be edited or repainted.

Cancel As Boolean

Allows you to cancel the editing operation.

The difference between the BeforeEdit and StartEdit events is that the former gets fired every time the current
cell is repainted, and does not guarantee that the control is really about to enter edit mode. The StartEdit
event, on the other hand, is only fired when the cell is about to enter edit mode.

The following code sets the grid to show a different background color for the cell that is currently being edited:

 Private Sub fg_StartEdit(ByVal Row As Long, ByVal Col As Long,
Cancel As Boolean)

 fg.CellBackColor = vbYellow

 End Sub

 Private Sub fg_AfterEdit(ByVal Row As Long, ByVal Col As Long)

 fg.CellBackColor = vbDefault

 End Sub

If the user starts editing by pressing a key, several events get fired in the following sequence:

KeyDown 65 ' user pressed the 'a' key (65 = 'A')
BeforeEdit 1 1 ' allows you to cancel the editing
StartEdit 1 1 ' not canceled, edit is about to start
KeyPressEdit 97 ' 'a' key passed to editor (97 = 'a')
KeyUpEdit 65 ' user released the key
KeyDownEdit 13 ' user pressed Enter
ValidateEdit ' allows you to validate the edit
AfterEdit 1 1 ' editing done
BeforeEdit 1 1 ' repainting cell
KeyUp 13 ' user released Enter key

See Also

VSFlexGrid Control (page 73)

StartPage Event

Fired before each page while the grid is being printed.

Syntax

Private Sub VSFlexGrid_StartPage(ByVal hDC As Long, ByVal Page As Long, Cancel As Boolean)

Remarks

This event gets fired once for each page while the grid is being printed with the PrintGrid method.

The parameters for the StartPage event are described below:

hDC As Long

This parameter contains a handle to the printer's device context. The hDC parameter is required by all
Windows GDI calls, and you may use it to add graphical elements or text to the page.

256 · VSFlexGrid Control

Page As Long

The number of the page being printed.

Cancel As Boolean

Set this parameter to True to cancel the print job.

The following code outputs the current status of the print job to the debug window:

Private Sub fg_StartPage(ByVal hDC As Long, ByVal Page As Long, Cancel
As Boolean)

 Debug.Print "Printing page " & Page & "..."

End Sub

See Also

VSFlexGrid Control (page 73)

ValidateEdit Event

Fired before the control exits cell edit mode.

Syntax

Private Sub VSFlexGrid_ValidateEdit(ByVal Row As Long, ByVal Col As Long, Cancel As Boolean)

Remarks

This event is fired before any changes made by the user are committed to the cell.

You may trap this event to read the contents of the cell editor with the EditText property and to make sure the
entry is valid for the given cell (Row, Col). If the entry fails validation, set the Cancel parameter to True. The
changes will be discarded and the control will remain in edit mode.

If you want to validate keys as they are typed into the editor, use the KeyPressEdit or the ChangeEdit events.
For more details on in-cell editing, see the Editable and ComboList properties.

For example, the code below shows a typical handler for the ValidateEdit event. In this case, column 1 only
accepts strings, and column 2 only accepts numbers greater than zero:

Sub fg_ValidateEdit(ByVal Row As Long, ByVal Col As Long, Cancel As
Boolean)
 Dim c$
 Select Case Col ' different validation rules for each column
 Case 1 ' column 1 only accepts strings
 c = Left$(fg.EditText, 1)
 If UCaseS(c) < "A" And UCase$(c) > "Z" Then Beep:
Cancel = True
 Case 2 ' column 2 only accepts numbers > 0
 If Val(fg.EditText) <= 0 Then Beep: Cancel = True
 End Select
End Sub

See Also

VSFlexGrid Control (page 73)

VSFlexString Properties, Events, and Methods · 257

VSFlexString Control

Before you can use a VSFlexString control in your application, you must add the VSSTR8.OCX file to your
project. In VB, right-click the toolbox and select the VSFlexString Control from the list. In VC++, right-click
on the dialog box and select the VSFlexString Control from the list, or use the #import statement to import
the VSSTR8.OCX file into the project.

To distribute applications you create with the VSFlexString control, you must install and register it on the
user's computer. The Setup Wizard provided with Visual Basic provides tools to help you do that. Please refer
to the Visual Basic manual for details.

The VSFlexString control allows you to incorporate regular-expression text matching into your applications.
This allows you to parse complex text easily, or to offer regular expression search-and-replace features such as
those found in professional packages like Microsoft Word, Visual C++, and Visual Basic.

VSFlexString looks for text patterns on its Text property, and lets you inspect and change the matches it finds.
The text patterns are specified through the Pattern property, using a regular expression syntax similar to the
ones used in Unix systems.

VSFlexString Properties, Events, and Methods
All of the properties, events, and methods for the VSFlexString control are listed in the following tables.
Properties, events, and methods that apply only to this control, or that require special consideration when used
with it, are marked with an asterisk (*). These are documented in later sections. For documentation on the
remaining properties, see the Visual Basic documentation.

Properties

*CaseSensitive Returns or sets whether matching is case-sensitive.

*Error Returns status information after each pattern-matching
operation.

*MatchCount Returns the number of matches found after setting the
Pattern or Text properties.

*MatchIndex Returns or sets the zero-based index of the current match
when there are multiple matches.

*MatchLength Returns the length of the current match, in characters.

*MatchStart Returns the zero-based position of the current match within
the Text string.

*MatchString Returns or sets the string corresponding to the current match.

*Pattern Returns or sets the regular expression used for matching
against the Text string.

*Replace Sets a string to replace all matches.

*Soundex Returns a phonetic code representing the current Text string.

*TagCount Returns the number of tags found after setting the Pattern,
Text, or MatchIndex properties.

*TagIndex Returns or sets the index of the current tag when there are
multiple tags in the Pattern string.

*TagLength Returns the length of the current tag, in characters.

258 · VSFlexString Control

*TagStart Returns the position of the current tag within the Text string,
starting from zero.

*TagString Returns or sets the string corresponding to the current tag.

*Text Returns or sets the text to be scanned searching for the
Pattern string.

*Version Returns the version of the control currently loaded in memory.

VSFlexString Properties

CaseSensitive Property

Returns or sets whether matching is case-sensitive.

Syntax

[form!]VSFlexString.CaseSensitive[= {True | False}]

Remarks

Setting CaseSensitive to True will in some cases allow you to use simpler, regular expressions. Setting it to
False gives more control over the matching process.

For example:

 Dim fs As New VSFlexString
 fs.Text = "This text contains the 'this' word."
 fs.Pattern = "This"

 fs.CaseSensitive = True
 Debug.Print "Case Sensitive: "; fs.MatchCount; " Match(es)"
 For i = 0 To fs.MatchCount - 1
 Debug.Print " "; fs.MatchString(i)
 Next

 fs.CaseSensitive = False
 Debug.Print "Case Insensitive: "; fs.MatchCount; " Match(es)"
 For i = 0 To fs.MatchCount - 1
 Debug.Print " "; fs.MatchString(i)
 Next

This code would produce the following output:

Case Sensitive: 1 Match(es)
 This
Case Insensitive: 2 Match(es)
 This
 this

Data Type

Boolean

Default Value

True

See Also

VSFlexString Control (page 257)

Error Property · 259

Error Property

Returns status information after each pattern-matching operation.

Syntax

val% = [form!]VSFlexString.Error

Remarks

Setting or getting most properties in the VSFlexString control cause it to perform a pattern-matching
operation. If an error occurs during this operation, an error code is returned in the Error property.

Possible values for the Error property are described below:

Constant Value Description

flexErrNone 0 No Error.

flexErrOutOfMemory 1 Out of Memory.

flexErrSquareB 2 The pattern has unmatched square brackets
(e.g. "[oops").

flexErrCurlyB 3 The pattern has unmatched square brackets
(e.g. "{oops").

flexErrBadPattern 4 Invalid pattern for replace operation (e.g.
Pattern = "": Replace = "Hello")

flexErrBadTagIndex 5 Tag index out of range (e.g. Pattern = "{[a-
z]}{[a-z]}": ? TagString(2))

flexErrNoMatch 6 No match was found (e.g. Text = "Paul":
Pattern = "John")

flexErrInvalidMatchIndex 7 Match index out of range (e.g. Text = "Paul":
Pattern = "Paul": ? MatchString(2))

Data Type

StringErrorSettings (Enumeration)

See Also

VSFlexString Control (page 257)

MatchCount Property

Returns the number of matches found after setting the Pattern or Text properties.

Syntax

val& = [form!]VSFlexString.MatchCount

Remarks

Looking for a pattern in a string may result in several matches. The MatchCount value is normally used as an
upper bound in loops that enumerate the matches. Information about each specific match can be retrieved
using the MatchString, MatchStart, and MatchLength properties.

260 · VSFlexString Control

For example:

 fs.Text = "The quick brown fox jumped over the lazy dog."
 fs.Pattern = "[qbf][a-z]*"
 Debug.Print "Matches found: "; fs.MatchCount
 For i = 0 To fs.MatchCount - 1
 Debug.Print " "; fs.MatchString(i)
 Next

This code produces the following output:

Matches found: 3
 quick
 brown
 fox

Data Type

Long

See Also

VSFlexString Control (page 257)

MatchIndex Property

Returns or sets the zero-based index of the current match when there are multiple matches.

Syntax

[form!]VSFlexString.MatchIndex[= value As Long]

Remarks

Looking for a pattern in a string may result in several matches. Setting MatchIndex to a value between zero
and MatchCount - 1 defines the current match to be used by the MatchString, MatchStart, and MatchLength
properties.

For example:

 fs.Text = "The quick brown fox jumped over the lazy dog."
 fs.Pattern = "[qbf][a-z]*"
 Debug.Print "Matches found: "; fs.MatchCount
 For i = 0 To fs.MatchCount - 1
 fs.MatchIndex = i
 Debug.Print " "; fs.MatchString; fs.MatchLength
 Next

This code produces the following output:

Matches found: 3
 quick 5
 brown 5
 fox 3

Note that you can also specify the index as an optional parameter when referring to these properties. Doing so
will automatically set the MatchIndex property to the new index. For example:

 fs.Text = "The quick brown fox jumped over the lazy dog."
 fs.Pattern = "[qbf][a-z]*"
 Debug.Print "Matches found: "; fs.MatchCount
 For i = 0 To fs.MatchCount - 1
 Debug.Print " "; fs.MatchString(i); fs.MatchIndex
 Next

MatchLength Property · 261

This code produces the following output:

Matches found: 3
 quick 0
 brown 1
 fox 2

Data Type

Long

See Also

VSFlexString Control (page 257)

MatchLength Property

Returns the length of the current match, in characters.

Syntax

val& = [form!]VSFlexString.MatchLength([MatchIndex As Long])

Remarks

Looking for a pattern in a string may result in several matches. You can retrieve information about each match
using the MatchLength, MatchStart, and MatchString properties.

The optional parameter MatchIndex should be a number between zero and MatchCount - 1. The default value
is the current value of the MatchIndex property.

The MatchStart and MatchLength properties are useful when you need to work on the original string stored
in the Text property. For example, the code below searches for a pattern in a RichEdit control and then
underlines each match:

 fs = rtfEdit.Text
 fs.Pattern = txtPattern
 For i = 0 To fs.MatchCount - 1
 rtfEdit.SelStart = fs.MatchStart(i)
 rtfEdit.SelLength = fs.MatchLength(i)
 rtfEdit.SelUnderline = True
 Next

Data Type

Long

See Also

VSFlexString Control (page 257)

MatchStart Property

Returns the zero-based position of the current match within the Text string.

Syntax

val& = [form!]VSFlexString.MatchStart([MatchIndex As Long])

Remarks

Looking for a pattern in a string may result in several matches. You can retrieve information about each match
using the MatchLength, MatchStart, and MatchString properties.

262 · VSFlexString Control

The optional parameter MatchIndex should be a number between zero and MatchCount - 1. The default
value is the current value of the MatchIndex property.

For an example, see the MatchLength property.

Data Type

Long

See Also

VSFlexString Control (page 257)

MatchString Property

Returns or sets the string corresponding to the current match.

Syntax

[form!]VSFlexString.MatchString([MatchIndex As Long])[= value As String]

Remarks

Looking for a pattern in a string may result in several matches. You can retrieve information about each match
using the MatchLength, MatchStart, and MatchString properties.

The optional parameter MatchIndex should be a number between zero and MatchCount - 1. The default value
is the current value of the MatchIndex property.

If you assign a new value to MatchString, the original text -- stored in the Text property -- is modified and a
new match is attempted automatically.

For example:

 fs.Text = "The quick brown fox jumped over the lazy dog."
 fs.Pattern = "[A-Z]*[a-z]+"
 For i = 0 To fs.MatchCount - 1
 s = fs.MatchString(i)
 fs.MatchString(i) = UCase(Left(s, 1)) & Mid(s, 2)
 Next
 Debug.Print fs.Text

This code capitalizes the first letter of each word, producing the following output:

The Quick Brown Fox Jumped Over The Lazy Dog.

Data Type

String

See Also

VSFlexString Control (page 257)

Pattern Property

Returns or sets the regular expression used for matching against the Text string.

Syntax

[form!]VSFlexString.Pattern[= value As String]

Pattern Property · 263

Remarks

The regular expression syntax recognized by VSFlexString is based on the following special characters:

Char Description

^ Beginning of a string.

$ End of a string.

. Any character.

[list] Any character in list. For example, "[AEIOU]" matches any single
uppercase vowel.

[^list] Any character not in list. For example, "[^]" matches any character
except a space.

[A-Z] Any character between 'A' and 'Z'. For example, "[0-9]" matches any
single digit.

? Repeat previous character zero or one time. For example, "10?"
matches "1" and "10".

* Repeat previous character zero or more times. For example, "10*"
matches "1", "10", "1000", etc.

+ Repeat previous character one or more times. For example, "10+"
matches "10", "1000", etc.

\ Escape next character. This is required to any of the special
characters that are part of the syntax. For example "\.*\+\\" matches
".*+\". It is also required to encode some special non-printable
characters (such as tabs) listed below.

{tag} Tag this part of the match so you can refer to it later using the
TagString property.

In addition to the characters listed above, there are seven special characters encoded using the backslash.
These are listed below:

Code Description ASCII Code VB Symbol

\a Bell (alert) 7 N/A

\b Backspace 8 N/A

\f Formfeed 12 N/A

\n New line 10 VbLf

\r Carriage return 13 VbCr

\t Horizontal tab 9 VbTab

\v Vertical tab 11 N/A

For some examples and more details, see the Regular Expressions topic.

264 · VSFlexString Control

Data Type

String

See Also

VSFlexString Control (page 257)

Replace Property

Sets a string to replace all matches.

Syntax

[form!]VSFlexString.Replace = value As String

Remarks

The replacement occurs as soon as you assign the new text to the Replace property. To perform the
replacement on several strings, you must set both the Text and Replace properties for each string you want to
modify.

For example:

 fs.Text = "The quick brown fox jumped over the lazy dog."
 fs.Pattern = " [fd][a-z]*"
 fs.Replace = " animal"
 Debug.Print fs.Text

This code produces the following output:

The quick brown animal jumped over the lazy animal.

The Replace property is particularly useful for changing marked up text documents such as HTML or XML.
For example, the code below converts bold HTML text into bold underlined text:

 fs = "<P>This is some HTML text.</P>"
 fs.CaseSensitive = False
 fs.Pattern = ""
 fs.Replace = "<U>"
 fs.Pattern = ""
 fs.Replace = "</U>"
 Debug.Print fs

This code produces the following output:

<P>This is some <U>HTML</U> text.</P>

The Replace string may contain tags, specified using curly brackets with the tag number between them, e.g.,
"{n}". The tags expand into the portions of the original Text string that were matched to the corresponding
tags in the search Pattern. The example below illustrates this:

' set up a pattern to search for a filename and extension:
' the curly brackets define two tags
' (note how the period is escaped with a backslash)
 fs.Pattern = "{[A-Za-z0-9_]+}\.{...}"
' assign a string to be matched against the pattern
' tag 0 will match the filename, tag 1 the extension
 fs.Text = "AUTOEXEC.BAT"
' expand the string (note that each tag may be used several times)
 fs.Replace = "File {0}.{1}, Name: {0}, Ext: {1}"
 Debug.Print fs.Text

This code produces the following output:

File AUTOEXEC.BAT, Name: AUTOEXEC, Ext: BAT

Soundex Property · 265

Data Type

String

See Also

VSFlexString Control (page 257)

Soundex Property

Returns a phonetic code representing the current Text string.

Syntax

val$ = [form!]VSFlexString.Soundex

Remarks

This property allows you to search a database for strings even if you don't know the exact spelling. The
database must include a Soundex field that encodes another field such as last name. When doing the search,
look for the Soundex code instead of looking for the name.

The Soundex code consists of an uppercase letter followed by up to three digits. It is built by assigning codes to
each character of the input string, then discarding vowels and repeated codes. The table below shows a few
strings and their Soundex codes:

 Andersen, Anderson, Anders: A536
 Agassis, Agassi, Agaci: A2
 Nixon, Nickson: N25
 Johnson, Jonson: J525
 Johnston: J523
 Rumpelstiltskin, Runpilztiskin, Rumpel: R514

The advantages of this system are that the code is short, it will rarely miss a match, and the system is widely
known and already implemented in many databases (the Soundex method was developed in 1918 by M.K.
Odell and R.C. Russel). The disadvantage is that it will often find spurious matches that are only vaguely
similar to the search string.

Data Type

String

See Also

VSFlexString Control (page 257)

TagCount Property

Returns the number of tags found after setting the Pattern, Text, or MatchIndex properties.

Syntax

val& = [form!]VSFlexString.TagCount

Remarks

Tags are parts of the search pattern delimited with curly braces ("{}"). Using tags allow you to refer to parts of
each match. The TagCount value is normally used as an upper bound in loops that enumerate the tags for a
specific match. Information about each specific tag can be retrieved using the TagString, TagStart, and
TagLength properties.

266 · VSFlexString Control

For example:

 fs.Text = "Mary had a little lamb"
 fs.Pattern = "Mary had {.*}"
 Debug.Print fs.TagCount; "tag: [" & fs.TagString(0) & "]"

This code produces the following output:

 1 tag: [a little lamb]

For a more detailed example, see the TagString property.

Data Type

Long

See Also

VSFlexString Control (page 257)

TagIndex Property

Returns or sets the index of the current tag when there are multiple tags in the Pattern string.

Syntax

[form!]VSFlexString.TagIndex[= value As Long]

Remarks

Tags are parts of the search pattern delimited with curly braces ("{}"). Using tags allow you to refer to parts of
each match. Setting TagIndex to a value between zero and TagCount - 1 defines the current tag to be used by
the TagString, TagStart, and TagLength properties.

Alternatively, you may specify the TagIndex as an index when you read the TagString property.

For an example, see the TagString property.

Data Type

Long

See Also

VSFlexString Control (page 257)

TagLength Property

Returns the length of the current tag, in characters.

Syntax

val& = [form!]VSFlexString.TagLength([TagIndex As Long])

Remarks

You can retrieve information about the current tag by reading the TagLength, TagStart, and TagString
properties.

The optional parameter MatchIndex should be a number between zero and TagCount - 1. The default value is
the current value of the TagIndex property.

Data Type

Long

TagStart Property · 267

See Also

VSFlexString Control (page 257)

TagStart Property

Returns the position of the current tag within the Text string, starting from zero.

Syntax

val& = [form!]VSFlexString.TagStart([TagIndex As Long])

Remarks

You can retrieve information about the current tag by reading the TagLength, TagStart, and TagString
properties.

The optional parameter MatchIndex should be a number between zero and TagCount - 1. The default value is
the current value of the TagIndex property.

Data Type

Long

See Also

VSFlexString Control (page 257)

TagString Property

Returns or sets the string corresponding to the current tag.

Syntax

[form!]VSFlexString.TagString([TagIndex As Long])[= value As String]

Remarks

Tags are parts of the search pattern delimited with curly braces ("{}"). Using tags allow you to refer to parts of
each match. You can retrieve information about each tag by reading the TagLength, TagStart, and TagString
properties.

The optional parameter MatchIndex should be a number between zero and TagCount - 1. The default value is
the current value of the TagIndex property.

The following example shows how you can use tags to extract additional information from each match:

fs.Text = "Mary had a little lamb, Joe has a Porsche, " & vbCrLf & _
"Matt has problems..., Mike will have many options, " & vbCrLf & _
"Bill had better stop smoking, And I have a headache!"
 fs.Pattern = "{[A-Z][a-z]*} ha[dsv]e? [a]*{[A-Za-z]+}" ' who
had/has/have stuff?
For i = 0 To fs.MatchCount – 1
 fs.MatchIndex = i
 Debug.Print fs.TagString(1) & " BELONGS TO " & fs.TagString(0)
Next

This code produces the following output:

little lamb BELONGS TO Mary
Porsche BELONGS TO Joe
problems BELONGS TO Matt
better stop smoking BELONGS TO Bill
headache BELONGS TO I

268 · VSFlexString Control

If you assign a new string to the TagString property, VSFlexString will modify the string in the Text property
and will attempt a new match. For example:

 fs.Text = "The quick brown fox jumped over the lazy dog."
 fs.Pattern = "{[A-Za-z]}[a-z]*"
 For i = 0 To fs.MatchCount - 1
 fs.MatchIndex = i
 fs.TagString(0) = UCase(fs.TagString(0))
 Next
 Debug.Print fs

This code produces the following output:

The Quick Brown Fox Jumped Over The Lazy Dog.

Data Type

String

See Also

VSFlexString Control (page 257)

Text Property (VSFlexString)

Returns or sets the text to be scanned searching for the Pattern string.

Syntax

[form!]VSFlexString.Text[= value As String]

Remarks

This is the VSFlexString's default property.

Whenever a new string is assigned to the Text or Pattern properties, VSFlexString will scan the text looking
for parts that fit the pattern.

To find out how many matches were found, read the MatchCount property. To retrieve information about
each match, read the MatchLength, MatchStart, and MatchString properties.

If you assign new values to the MatchString property, the changes will be reflected in the contents of the Text
property.

For details on how to build patterns, see the Pattern property.

Data Type

String

See Also

VSFlexString Control (page 257)

Version Property (VSFlexString)

Returns the version of the control currently loaded in memory.

Syntax

val% = [form!]VSFlexString.Version

Remarks

You may want to check this value at the Form_Load event, to make sure the version that is executing is at
least as current as the version used to develop your application.

Version Property (VSFlexString) · 269

The version number is a three-digit integer where the first digit represents the major version number and the
last two represent the minor version number. For example, version 7.00 returns 700.

Data Type

Integer

Default Value

700

See Also

VSFlexString Control (page 257)

How do I update a project file that uses VSFLEX7 to VSFlexGrid 8.0? · 271

Frequently Asked Questions

This section contains answers to the most common questions people ask our technical support staff. You
should read this section even if you have not experienced any problems, especially if you are using Visual
C++. You may find some useful tips here.

How do I update a project file that uses VSFLEX7 to VSFlexGrid 8.0?
Use CONVERT, the conversion utility provided with VSFlexGrid 8.0. The CONVERT utility also allows
you to convert between the ADO/RDO and OLEDB/ADO versions of the grid.

The CONVERT utility is written in Visual Basic and is supplied in source code format, so you may modify it
if you need to.

What is difference between VSFLEX8.OCX, VSFLEX8D.OCX, and
VSFLEX8L.OCX?

The VSFlexGrid 8.0 package includes three versions of the grid:

VSFLEX8.OCX This version supports OLEDB/ADO data-binding. You may bind
the control to any ADO data source, including the ADO data
control that ships with VB6.

VSFLEX8D.OCX This version supports DAO/RDO data-binding. You may bind the
control to the traditional data sources (built-in DAO data control,
RDO data control).

VSFLEX8L.OCX This version has no data-binding support in the traditional sense
(you can still bind the control to arrays or use the
FlexDataSource property).

The controls included in each file are functionally identical, but have different identifiers (GUIDs and class
names). This allows programs using both versions to run simultaneously on the same computer without
conflict.

Before starting a new project or migrating an existing project to VSFlexGrid 8.0, you must decide which
version to use. The following information will help you make the decision:

1. If you are planning to use the grid to display and edit information coming from OLEDB data sources,
use VSFLEX8.OCX. This version requires ADO to be installed on the computer.

2. If you are planning to use the grid to display and edit information coming from DAO data sources
(such as the built-in data control), use VSFLEX8D.OCX.

3. If you are using the VSFlexGrid in unbound mode (i.e., not bound to any databases), use
VSFLEX8L.OCX.

Whichever version you decide to use, you may easily switch later using the CONVERT utility supplied with
VSFlexGrid 8.0.

272 · Frequently Asked Questions

Does VSFlexGrid 7.0 work with VB4-16 or any other 16-bit environments?
It does not. VSFlexGrid 8.0 is a 32-bit-only product. Please contact ComponentOne's customer service
department if you require a 16-bit version of VSFLEX.

When adding VSFLEX8.OCX to my VB4 or VB5 project, I get the following
error message: "Error loading DLL". What is wrong?

VSFLEX8.OCX contains the OLEDB/ADO version of the VSFlexGrid control. Because of that, it requires
the ADO system DLL's in order to run (the same is True for the OLEDB controls that ship with VB6). To use
VSFLEX8.OCX on a computer that only has VB4 or VB5 installed, you will need to install the ADO system
DLL's.

If you are not using OLEDB/ADO, consider using the VSFLEX8L.OCX version of the control, which is not
subject to this limitation.

Does VSFlexGrid 7.0 work with VB4, VB5 and VB6?
VSFlexGrid 8.0 works with any 32-bit version of Visual Basic. Ideally, however, you should use it with VB5
or later.

When used with VB4, the optional parameters in some properties are not interpreted as optional by VB. The
most important property affected by this is the Cell property, which has the following syntax:

 [v =] fg.Cell(iProp, [Row1], [Col1], [Row2], [Col2])

In VB5 or VB6, you may omit all or some of the last four parameters. In VB4, you must supply all five.

How do I limit the length of text entries in a column?
Set the EditMaxLength property in response to the BeforeEdit event.

There are several ways to add data to a VSFlexGrid control. Which one is
the fastest?

The fastest way to add data is using the TextMatrix property, and the slowest is using the AddItem method.

If the data is already loaded in an array of Variants, then the BindToArray method is even faster.
(BindToArray does not actually load the data, it just tells the control where the data is).

Whatever method you choose, make sure you set the Redraw property to False before you start populating the
grid, and restore its value when you are done. This may increase speed by an order of magnitude, especially
when using AddItem.

How can I add or delete a column at a given position? · 273

How can I add or delete a column at a given position?
To add a column at a specific position, create the new column by incrementing the Cols property, then move it
to the desired position using the ColPosition property.

To delete a column at a specific position, move the column to the right using the ColPosition property, then
delete it by decrementing the Cols property.

The following VB code shows how to do it: it deletes the current column or inserts a new column to the left of
the current column, depending on which button was clicked.

 Private Sub Command1_Click(Index As Integer)
 With fg
 ' insert column
 If Index = 0 Then
 .Cols = .Cols + 1 ' add column
 .ColPosition(.Cols - 1) = .Col ' move into place

 ' delete column
 Else
 .ColPosition(.Col) = .Cols - 1 ' move to right
 .Cols = .Cols - 1 ' delete column
 End If
 End With
 End Sub

How can I implement OLE Drag and Drop?
To implement automatic OLE Drag and Drop, set the OLEDragMode or OLEDropMode properties to the
automatic settings, and you are done.

To implement manual OLE Drag and Drop, you will need to write some code. See the OLE Drag and Drop
Demo for an example that implements both manual and automatic OLE Drag and Drop.

How can I print the contents of a VSFlexGrid control?
Use the PrintGrid method.

To add advanced features such as print preview, or include one or more grids into a single document, consider
ComponentOne's VSPrinter control (part of the VSVIEW product). The VSPrinter control has a
RenderControl property that you can use to print grids of any size. This method will also allow you to control
page breaks, create repeating headings, and preview the document.

How do I handle optional parameters in VSFlexGrid using C++?
Optional parameters are always Variants. To omit optional parameters, use Variants of type VT_ERROR. For
example:

 VARIANT v;
 V_VT(&v) = VT_ERROR;
 fg.AddItem("hello\tmy friend", v);

Note that using ActiveX controls in Visual C++ is a little different, depending on whether you are using MFC
or not. The wrapper classes generated by the MFC Class Wizard require you to pass optional parameters as

274 · Frequently Asked Questions

illustrated above. The wrapper classes generated by the #import statement supply default values for optional
parameters, so you may simply omit them.

For more details and tips on using the VSFlexGrid control in Visual C++, see the Using VSFlexGrid in
Visual C++ topic in the documentation.

How do I handle Pictures in VSFlexGrid when using C++?
If you are using MFC, the best way is to use MFC's CPictureHolder class. Here's an example that shows how
you can set the VSFlexGrid's CellPicture property (or any other ActiveX Picture property) from C++:

1. Using the AppWizard, generate a new project with as a dialog-based app with the OLE controls
option set to True.

2. Add a VSFlexGrid control to the form and connect it to the m_flex member variable.

3. Add a bitmap resource and set its ID to IDB_ARROWPIC.

4. Add the following handler for the m_flex Click event:

 // include MFC header that declares the CPictureHolder class, which
 // is the easiest way to deal with OLE-based pictures
 #include "afxctl.h"
 // this is the click event handler, and also the only custom
function in this project
 void CTestCDlg::OnClickFlex()
 {
 // Create a CPictureHolder variable that will hold the picture.
 // (For details, see the ctlPict.cpp file in your MFC\SRC
directory.)
 CPictureHolder pic;
 // Initialize the picture holder by giving it a picture to
hold.
 // In this case, we're giving it the resource ID of a bitmap,
but
 // CPictureHolder can also handle icons and metafiles.
 pic.CreateFromBitmap(IDB_ARROWPIC);

 // Tell the control to show the picture. Because we're handling
 // a click event, the row and column have already been
selected.
 m_flex.SetCellPicture(pic.GetPictureDispatch());
 }

If you are not using MFC, refer to the Using VSFlexGrid in Visual C++ topic in the documentation. It shows
how you can use pictures without MFC support and much more.

Index · 275

Index
A
AccessibleDescription property 85
AccessibleName property 85
AccessibleRole property 86
AccessibleValue property 86
AddItem method 204
AfterCollapse event 226
AfterDataRefresh event 227
AfterEdit event 228
AfterMoveColumn event 228
AfterMoveRow event 228
AfterRowColChange event 229
AfterScroll event 229
AfterSelChange event 229
AfterSort event 230
AfterUserFreeze event 230
AfterUserResize event 231
Aggregate property 86
AllowBigSelection property 87
AllowSelection property 88
AllowUserFreezing property 88
AllowUserResizing property 89
Appearance property 90
Archive method 205
ArchiveInfo property 92
Archives 22
AutoResize property 93
AutoSearch property 93
AutoSearchDelay property 94
AutoSize method 206
AutoSizeMode property 94
AutoSizeMouse property 95

B
BackColor property 95
BackColorAlternate property 96
BackColorBkg property 96
BackColorFixed property 97
BackColorFrozen property 97
BackColorSel property 97
BeforeCollapse event 231
BeforeDataRefresh event 233
BeforeEdit event 233
BeforeMouseDown event 234
BeforeMoveColumn event 234
BeforeMoveRow event 235
BeforePageBreak event 235
BeforeRowColChange event 235

BeforeScroll event 236
BeforeScrollTip event 236
BeforeSelChange event 237
BeforeSort event 238
BeforeUserResize event 238
BindToArray method 207
BottomRow property 98
BuildComboList method 208

C
CaseSensitive property 258
Cell property 98
CellAlignment property 101
CellBackColor property 101
CellBorder method 209
CellBorderRange method 210
CellButtonClick event 239
CellButtonPicture property 102
CellChanged event 239
CellChecked property 103
CellFloodColor property 104
CellFloodPercent property 104
CellFontBold property 105
CellFontItalic property 105
CellFontName property 106
CellFontSize property 106
CellFontStrikethru property 106
CellFontUnderline property 107
CellFontWidth property 107
CellForeColor property 107
CellHeight property 108
CellLeft property 108
CellPicture property 109
CellPictureAlignment property 109
Cells

editing 15
formatting 16
merging 19

CellTextStyle property 110
CellTop property 110
CellWidth property 111
ChangeEdit event 240
Clear method 211
ClientHeight property 111
ClientWidth property 111
Clip property 112
ClipSeparators property 113
Col property 114
ColAlignment property 114
ColComboList property 115

276 · Index

ColData property 116
ColDataType property 117
ColEditMask property 118
ColFormat property 118
ColHidden property 120
ColImageList property 121
ColIndent property 123
ColIndex property 123
ColIsVisible property 124
ColKey property 124
ColPos property 125
ColPosition property 125
Cols property 125
ColSel property 126
ColSort property 126
Columns 14
ColWidth property 127
ColWidthMax property 128
ColWidthMin property 128
ComboCloseUp event 240
ComboCount property 128
ComboData property 129
ComboDropDown event 241
ComboIndex property 130
ComboItem property 130
ComboList property 130
ComboSearch property 132
Compare event 241
Copy method 212
Cut method 212

D
Data binding

ADO and DAO 22
other types 23

DataMember property 133
DataMode property 133
DataRefresh method 212
DataSource property 135
Delete method 212
DragMode property 135
DragRow method 213
DrawCell event 242

E
Editable property 135
EditCell method 213
EditMask property 136
EditMaxLength property 138
EditSelLength property 139
EditSelStart property 139
EditSelText property 140
EditText property 141

EditWindow property 141
Ellipsis property 142
EndAutoSearch event 242
EnterCell event 243
Error event 243
Error property 259
ExplorerBar property 142
ExtendLastCol property 143

F
FAQs 271
FillStyle property 144
FilterData event 243
FindRow property 145
FindRowRegex property 146
FinishEditing method 214
FixedAlignment property 146
FixedCols property 147
FixedRows property 147
Flags property 148
FlexDataSource property 149
FloodColor property 151
FocusRect property 152
FontBold property 152
FontItalic property 153
FontName property 153
FontSize property 153
FontStrikethru property 153
FontUnderline property 154
FontWidth property 154
ForeColor property 154
ForeColorFixed property 155
ForeColorFrozen property 155
ForeColorSel property 156
FormatString property 156
FrozenCols property 157
FrozenRows property 157

G
GetHeaderRow event 245
GetMergedRange method 214
GetNode method 214
GetNodeRow method 215
GetSelection method 216
GridColor property 158
GridColorFixed property 158
GridLines property 159
GridLinesFixed property 160
GridLineWidth property 160
GroupCompare property 161

Index · 277

H
HighLight property 161

I
IsCollapsed property 162
IsSearching property 162
IsSelected property 163
IsSubtotal property 163

K
KeyDownEdit event 245
KeyPressEdit event 246
KeyUpEdit event 246

L
LeaveCell event 247
LeftCol property 164
LoadArray method 216
LoadGrid method 217
LoadGridURL method 218
Loading 22

M
MatchCount property 259
MatchIndex property 260
MatchLength property 261
MatchStart property 261
MatchString property 262
MergeCells property 164
MergeCellsFixed property 167
MergeCol property 167
MergeCompare property 168
MergeRow property 168
MouseCol property 169
MouseRow property 170
MultiTotals property 170

N
NodeClosedPicture property 171
NodeOpenPicture property 172

O
of VSFlexGrid 197, 201
of VSFlexString 268
OLECompleteDrag event 247
OLEDrag method 219
OLEDragDrop event 248
OLEDragMode property 172
OLEDragOver event 249

OLEDropMode property 173
OLEGiveFeedback event 250
OLESetCustomDataObject event 251
OLESetData event 251
OLEStartDrag event 252
Outline method 219
OutlineBar property 174
OutlineCol property 175
OwnerDraw property 176

P
Paste method 219
Pattern property 262
Picture property 177
PicturesOver property 178
PictureType property 178
PrintGrid method 220
Printing

demo 55
grids 22

R
Redraw property 179
RemoveItem method 221
Replace property 264
RightCol property 180
RightToLeft property 180
Row property 180
RowColChange event 253
RowData property 181
RowHeight property 182
RowHeightMax property 182
RowHeightMin property 182
RowHidden property 183
RowIsVisible property 183
RowOutlineLevel property 184
RowPos property 184
RowPosition property 185
Rows 14
Rows property 185
RowSel property 185
RowStatus property 186

S
SaveGrid method 221
Saving 21
ScrollBars property 187
ScrollTips property 187
ScrollTipText property 188
ScrollTrack property 188
SelChange event 253
Select method 223

278 · Index

SelectedRow property 189
SelectedRows property 189
SelectionMode property 190
SetupEditStyle event 253
SetupEditWindow event 254
SheetBorder property 191
ShowCell method 223
ShowComboButton property 191
Sort property 192
SortAscendingPicture property 195
SortDescendingPicture property 195
Soundex property 265
StartAutoSearch event 254
StartEdit event 254
StartPage event 255
Subtotal method 224
SubtotalPosition property 195
Support 10

T
TabBehavior property 196
TagCount property 265
TagIndex property 266
TagLength property 266
TagStart property 267
TagString property 267
Text property 197, 268

of VSFlexGrid 197
of VSFlexString 268

TextArray property 197
TextMatrix property 198
TextStyle property 198
TextStyleFixed property 199
TopRow property 199
TreeColor property 200

V
ValidateEdit event 256
Value property 200
ValueMatrix property 201
Version property 201, 268

of VSFlexGrid 201
of VSFlexString 268

VirtualData property 202
Visual C++ 24, 59
Visual J++ 30
VSFlexGrid

adding to the Toolbox 11
controls 1, 73
overview 1, 13
samples 35
tutorials 41
uninstalling 3

upgrading 3
using in Visual C++ 24
using in Visual J++ 30

VSFlexString
control 257
demos 68, 69, 70
overview 65

W
WallPaper property 202
WallPaperAlignment property 204
WordWrap property 204

	Table of Contents
	Overview
	VSFlexGrid Controls
	What's New in VSFlexGrid 8.0 for Active X
	Feature Overview

	Installing VSFlexGrid 8.0 for Active X
	SetUp Files
	Installing Demonstration Versions
	Uninstalling VSFlexGrid 8.0

	Upgrading From Previous Versions
	END-USER LICENSE AGREEMENT FOR COMPONENTONE SOFTWARE
	Technical Support
	ComponentOne Web site
	ComponentOne HelpCentral
	Internet e-mail
	Peer-to-Peer newsgroup
	Documentation

	Redistributable Files
	Adding the VSFlexGrid 8.0 Component to the Toolbox

	VSFlexGrid Introduction
	Basic Operations
	Cursor
	Selection
	Variations

	Editing Cells
	Editing Text, Lists, and Combos
	Cell Buttons
	Masks
	Validation
	Controlling Edit Mode

	Formatting Cells
	Formatting cell contents
	Formatting cell appearance
	Conditional formatting

	Outlining and Summarizing
	Creating Subtotals
	Creating Outline Trees

	Merging Cells
	Merged table headers
	Merged data views
	Spilling Text

	Saving, Loading, and Printing
	Saving Grids
	Loading Grids
	Creating Archives
	Printing Grids

	Data Binding (ADO and DAO)
	The DataSource property
	The DataMode property
	The VirtualData property
	The AfterDataRefresh event
	Other types of Data Binding
	Binding to Variant arrays
	Binding to other VSFlexGrid controls
	Binding to a FlexDataSource

	Using VSFlexGrid in Visual C++
	Using VSFlexGrid in MFC projects
	Handling Optional Parameters in MFC
	Handling Picture Properties in MFC
	Dual Interfaces in MFC
	Using VSFlexGrid in ATL projects
	Handling Pictures in ATL projects
	Creating Controls Dynamically in ATL

	Using VSFlexGrid in Visual J++
	Using the Text Property
	Handling Pictures
	Clearing Pictures
	Data Binding

	VSFlexGrid Property Groups

	VSFlexGrid Samples
	Visual Basic Samples
	C++ Samples
	HTML Samples

	VSFlexGrid Tutorials
	Edit Demo
	Step 1: Create the Control
	Step 2: Data Formatting
	Step 3: Check Boxes
	Step 4: Drop-Down Lists
	Step 5: Input Masks
	Step 6: Complex Data Validation
	Step 7: Clipboard Support

	Outline Demo
	Step 1: Create the Control
	Step 2: Read the Data and Build the Outline
	Step 3: Use the Outline
	Step 4: Custom Mouse and Keyboard Handling

	Data Analysis Demo
	Step 1: Create the Control
	Step 2: Initialize and populate the grid
	Step 3: Automatic Sorting
	Step 4: Cell Merging
	Step 5: Automatic Subtotals
	Step 6: Outlining

	Cell Flooding Demo
	ToolTip Demo
	Printing Demo
	OLE Drag and Drop Demo
	Step 1: Create the Controls
	Step 2: Initialize the Controls
	Step 3: Manual OLE Drag
	Step 4: Manual OLE Drop

	Visual C++ MFC Demo
	Step 1: Create the project
	Step 2: Add the VSFlexGrid Control to the Project
	Step 3: Create the VSFlexGrid Control
	Step 4: Create a Member Variable to Access the Control
	Step 5: Read the Data and Build the Outline
	Step 6: Use the Outline
	Step 7: Custom Mouse and Keyboard Handling
	Step 8: Cell Pictures

	VSFlexString Introduction
	Regular Expressions
	Matching Demo
	Replacing Demo
	Data-Cleaning Demo
	Calculator Demo

	VSFlexGrid Control
	VSFlexGrid Properties, Events, and Methods
	VSFlexGrid Properties
	VSFlexGrid Methods
	VSFlexGrid Events

	VSFlexString Control
	VSFlexString Properties, Events, and Methods
	VSFlexString Properties

	Frequently Asked Questions
	How do I update a project file that uses VSFLEX7 to VSFlexGr
	What is difference between VSFLEX8.OCX, VSFLEX8D.OCX, and VS
	Does VSFlexGrid 7.0 work with VB4-16 or any other 16-bit env
	When adding VSFLEX8.OCX to my VB4 or VB5 project, I get the
	Does VSFlexGrid 7.0 work with VB4, VB5 and VB6?
	How do I limit the length of text entries in a column?
	There are several ways to add data to a VSFlexGrid control.
	How can I add or delete a column at a given position?
	How can I implement OLE Drag and Drop?
	How can I print the contents of a VSFlexGrid control?
	How do I handle optional parameters in VSFlexGrid using C++?
	How do I handle Pictures in VSFlexGrid when using C++?

	Index

