
Data Access with ADO
ActiveX Data Objects, or ADO for short, is Microsoft’s technology of choice for performing client-
server data access between any data consumer (the client) and any data source (the server). There
are other data-access technologies you may have heard of in relation to Excel, including DAO
and ODBC. However, these are not covered in this chapter because Microsoft intends for ADO to
supercede these older technologies, and for the most part this has occurred.

ADO is a vast topic, easily the subject of its own book. This chapter necessarily presents only a
small subset of ADO, covering the topics and situations that I’ve run across most frequently in my
career as an Excel programmer. This chapter focuses on ADO 2.5. This version of ADO ships
natively with Windows 2000 or Office 2000 and higher, so you can assume it will be present on any
computer you distribute your application to.

An Introduction to Structured
Query Language (SQL)

It’s impossible to get very far into a discussion of data access without running into SQL, the query-
ing language used to communicate with all databases commonly in use today. SQL is a standards-
based language that has as many variations as there are databases. This chapter uses constructs
compliant with the latest SQL standard, SQL-92, wherever possible.

There are four fundamental operations supported by SQL:

❑ SELECT— Used to retrieve data from a data source

❑ INSERT— Used to add new records to a data source

❑ UPDATE— Used to modify existing records in a data source

❑ DELETE— Used to remove records from a data source

The terms record and field are commonly used when describing data. The data sources you’ll be
concerned with in this chapter can all be thought of as being stored in a two-dimensional grid. A
record represents a single row in that grid. A field represents a column in the grid. The intersection

23_046432 ch20.qxp 2/16/07 10:02 PM Page 431

of a record and a field is a specific value. A resultset is the term used to describe the set of data returned
by a SQL SELECT statement.

Use the Customers table from Microsoft’s Northwind sample database, as shown in Figure 20-1, to illus-
trate the SQL syntax examples. Northwind must be installed with Access 2007 in order to follow many
of the examples in this chapter.

Figure 20-1

The SELECT Statement
The SELECT statement is by far the most commonly used statement in SQL. This is the statement that
allows you to retrieve data from a data source. The following clauses of the SELECT statement are used
in this chapter. Only the SELECT and FROM clauses are required to constitute a valid SQL statement:

SELECT [DISTINCT] column1, column2, ...
FROM table_name
[WHERE restriction_condition]
[ORDER BY column_name [ASC|DESC]]

The SELECT clause tells the data source what fields you wish to return. The field names in the SELECT
clause are called the SELECT list. The FROM clause tells the data source which table the records should be
retrieved from. For instance, a simple example statement could look like this:

SELECT Company, [First Name], [Last Name]
FROM Customers

You will notice that SQL keywords such as SELECT and UPDATE are shown in upper-
case. This is considered good SQL programming practice. When viewing complex
SQL statements, having SQL keywords in uppercase makes it significantly easier to
distinguish between those keywords and their operands. The subsections of a SQL
statement are called clauses. In all SQL statements, some clauses are required and
others are optional. When describing the syntax of SQL statements, optional clauses
and keywords will be surrounded by square brackets.

432

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 432

This statement will notify the data source that you want to retrieve all of the values for the Company,
First Name, and Last Name fields from the Customers table.

The SELECT statement also provides a shorthand method for indicating that you want to retrieve all
fields from the specified table. This involves using a single asterisk as the SELECT list:

SELECT *
FROM Customers

This SQL statement will return all fields and all records from the Customers table. It’s generally not con-
sidered a good practice to use * in the SELECT list, because it leaves your code vulnerable to changes in
field names or the order of fields in the table. It can also be very resource intensive with large tables,
because all columns and rows will be returned whether or not they are actually needed by the client.
However, there are times when it is a useful and time-saving shortcut.

Say that you want to see a list of countries where you have at least one customer located. Simply per-
forming the following query would return one record for every customer in your table:

SELECT [Country/Region]
FROM Customers

This resultset would contain many duplicate country names. The optional DISTINCT keyword allows
you to return only unique values in your query:

SELECT DISTINCT [Country/Region]
FROM Customers

If you only want to see the list of customers located in the U.S., you can use the WHERE clause to restrict
the results to only those customers:

SELECT Company, [First Name], [Last Name]
FROM Customers
WHERE [Country/Region] = ‘USA’

Note that the string literal USA must be surrounded by single quotes. This is also true of dates. Numeric
expressions do not require any surrounding characters.

Finally, suppose you would like to have your USA customer list sorted by Company. This can be accom-
plished using the ORDER BY clause:

SELECT Company, [First Name], [Last Name]
FROM Customers
WHERE Country = ‘USA’
ORDER BY Company

Note that the First Name and Last Name fields in the SQL statement are surrounded
by square brackets. This is required for any field or table name that contains spaces
or non-alphanumeric characters.

433

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 433

The ORDER BY clause will order fields in ascending order by default. If instead you wanted to sort a field
in descending order, you could use the optional DESC specifier immediately after the name of the col-
umn whose sort order you wanted to modify.

The INSERT Statement
The INSERT statement allows you to add new records to a table. The basic syntax of the INSERT state-
ment is the following:

INSERT INTO table_name (column1, column2, ...)
VALUES (value1, value2, ...)

Use of the INSERT statement is very simple. You provide the name of the table and its columns that
you’ll be inserting data into, and then provide a list of values to be inserted. You must provide a value in
the VALUES clause for each column named in the INSERT clause, and the values must appear in the same
order as the column names they correspond to. Here’s an example showing how to insert a new record
into the Customers table:

INSERT INTO Customers (Company, [First Name], [Last Name], [Country/Region])
VALUES (‘New Company’, ‘Rob’, ‘Bovey’, ‘USA’)

Note that as with the WHERE clause of the SELECT statement, all of the string literals in the VALUES clause
are surrounded by single quotes. This is the rule throughout SQL.

If you have provided values for every field in the table in your VALUES clause, the field list in the
INSERT clause can be omitted. For example, if the four preceding fields were the only fields in the
Customers table, you could simply use:

INSERT INTO Customers
VALUES (‘New Company’, ‘Rob’, ‘Bovey’, ‘USA’)

The UPDATE Statement
The UPDATE statement allows you to modify the values in one or more fields of an existing record or
records in a table. The basic syntax of the UPDATE statement is the following:

UPDATE table_name
SET column1 = value1, column2 = value2, ...
[WHERE restriction_condition]

Even though the WHERE clause of the UPDATE statement is optional, you must take care to specify it
unless you are sure that you don’t need it. Executing an UPDATE statement without a WHERE clause will
modify the specified field(s) of every record in the specified table. Say, for example, you executed the fol-
lowing statement:

UPDATE Customers
SET [Country/Region] = ‘USA’

434

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 434

Every record in the Customers table would have its Country field modified to contain the value USA.
There are some cases where this mass update capability is useful, but it can also be very dangerous,
because there is no way to undo the update if you execute it by mistake.

The more common use of the UPDATE statement is to modify the value of a specific record, identified by
the use of the WHERE clause. Before examining an example of this usage, you need to understand a very
important aspect of database design called the primary key. The primary key is a field or group of fields
in a database table whose values can be used to uniquely identify each record in that table. There is no
way to identify a specific record in a table that does not have a primary key. Without that capability, you
cannot perform an update on a specific record.

The primary key in this sample Customers table is the ID field. Each customer record in the Customers
table has a unique value for ID. In other words, a specific ID value occurs in one, and only one, customer
record in the table.

Say that the First Name and Last Name fields have changed for the customer “Company A”, whose ID
is 1. You could perform an UPDATE to record those changes in the following manner:

UPDATE Customers
SET [First Name] = ‘First’, [Last Name] = ‘Last’
WHERE ID = 1

Because you used the primary key field to specify a single record in the Customers table, only this
record will be updated.

The DELETE Statement
The DELETE statement allows you to remove one or more records from a table. The basic syntax of the
DELETE statement is the following:

DELETE FROM table_name
[WHERE restriction_condition]

As with the UPDATE statement, notice that the WHERE clause is optional. This is probably more dangerous
in the case of the DELETE statement, however, because executing a DELETE statement without a WHERE
clause will delete every single record in the specified table. Once again, there is no way to undo this, so be
very careful. You should always include a WHERE clause in your DELETE statements unless you have
some very specific reason for wanting to remove all records from a table.

Assume that, for some reason, an entry was made into the Customers table with the ID value of 30 by
mistake (maybe they were a supplier rather than a customer). To remove this record from the
Customers table, you would use the following DELETE statement:

DELETE FROM Customers
WHERE ID = 30

Once again, because you used the record’s primary key in the WHERE clause, only that specific record will
be affected by the DELETE statement.

435

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 435

An Overview of ADO
ADO is Microsoft’s universal data-access technology. Universal means that ADO is designed to allow
access to any kind of data source imaginable, from a SQL Server database to the Windows Active
Directory to a text file saved on your local hard disk, and even to non-Microsoft products such as Oracle.
All these things and many more can be accessed by ADO.

ADO doesn’t actually access a data source directly. Instead, ADO is a data consumer that receives its
data from a lower-level technology called OLE DB. OLE DB cannot be accessed directly using VBA, so
ADO was designed to provide an interface that allows you to do so. ADO receives data from OLE DB
providers. Most OLE DB providers are specific to a single type of data source. Each is designed to provide
a common interface to whatever data its source may contain. One of the greatest strengths of ADO is
that, regardless of the data source you are accessing, you use essentially the same set of commands.
There’s no need to learn different technologies or methods to access different data sources.

Microsoft also provides an OLE DB provider for ODBC. This general-purpose provider allows ADO to
access any data source that understands ODBC, even if a specific OLE DB data provider is not available
for that data source. Figure 20-2 shows the communication path between ADO and a data source.

Figure 20-2

Unlike the deep, complex object models of the data access technologies that preceded it, the ADO object
model is very flat and simple to understand. It achieves this simplicity without losing any of its power to
access and manipulate data.

ADO consists of five top-level objects, all of which can be created independently. This chapter covers the
Connection object, the Command object, and the Recordset object. ADO also exposes a Record object
(not to be confused with the Recordset object), as well as a Stream object. These objects are not com-
monly used in Excel applications, so they are not covered in this chapter.

In addition to the five top-level objects, ADO contains four collections. That’s it. Five objects and four
collections are all you need to master to gain the power of ADO at your fingertips. Figure 20-3 shows the
ADO object model.

The next three sections provide an introduction to each of the top-level ADO objects that you’ll use in
this chapter. These sections provide general information that will be applicable whenever you are using
ADO. Specific examples of how to use ADO to accomplish a number of the most common data access
tasks you’ll encounter in Excel VBA are covered in the sections that follow.

436

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 436

Figure 20-3

This is not intended to be an exhaustive reference to ADO. I will only be covering those items whose use
will be demonstrated in this chapter, or those I consider particularly important to point out. ADO fre-
quently gives you the flexibility to make the same setting in multiple ways, as both an object property
and an argument to a method, for instance. In these cases, I will usually only cover the method I intend
to demonstrate in the example sections.

The Connection Object
The Connection object is what provides the pipeline between your application and the data source
you want to access. Like the other top-level ADO objects, the Connection object is extremely flexible.
In some cases, this may be the only object you need to use. Simple commands can easily be executed
directly through a Connection object. In other cases, you may not need to create a Connection object at
all. The Command and Recordset objects can create a Connection object automatically if they need one.

Constructing and tearing down a data source connection can be a time-consuming process. If you will be
executing multiple SQL statements over the course of your application, you should create a publicly
scoped Connection object variable and use it for each query. This allows you to take advantage of con-
nection pooling.

Connection pooling is a feature provided by ADO that will preserve and reuse connections to the data
source rather than creating new connections for each query, which would be a waste of resources.
Connections can be reused for different queries as long as their connection strings are identical. This is
typically the case in Excel applications, so I recommend taking advantage of it.

Connection Object Properties
This section examines the important Connection object properties.

437

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 437

The ConnectionString Property
This property is used to provide ADO, and the OLE DB provider you are using, with the information
required to connect to the data source. The connection string consists of a semicolon-delimited series of
arguments in the form of “name=value;” pairs.

For the purposes of this chapter, the only ADO argument used is the Provider argument. The Provider
argument tells ADO which OLE DB provider to use. All other arguments in connection strings presented in
this chapter will be specific to the OLE DB provider being used. ADO will pass these arguments directly
through to the provider. The following sample code demonstrates how to create a connection string to the
Northwind database using the Access 2007 OLE DB provider:

objConn.ConnectionString = “Provider=Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\Northwind 2007.accdb”

The only argument specific to ADO in the connection string is the Provider argument. All other argu-
ments are passed directly through to the specified OLE DB provider. If a different provider were being
used, the arguments would be different as well. You will see this when you begin to connect to various
data sources in the example sections. The Provider argument to the connection string is optional. If no
provider is specified, ADO uses the OLE DB provider for ODBC by default.

The ConnectionTimeout Property
This property specifies how many seconds ADO will wait for a connection to complete before canceling
the attempt and raising an error. The default value is 15 seconds. If you have a situation where connec-
tions normally take a long time to complete, you can increase this number so ADO doesn’t terminate the
connection attempt prematurely. The following code sample changes the timeout value on the connec-
tion to 30 seconds:

objConn.ConnectionTimeout = 30

The State Property
The State property allows you to determine whether a connection is open, closed, connecting, or execut-
ing a command. The value will be a bit mask containing one or more of the following ObjectStateEnum
constants:

❑ adStateClosed— The connection is closed

❑ adStateOpen— The connection is open

❑ adStateConnecting— The object is in the process of making a connection

❑ adStateExecuting— The connection is executing a command

If you attempt to close a Connection object that is already closed, you will cause an error. You can pre-
vent this from occurring by testing the state of the Connection object before closing it:

If CBool(objConn.State And adStateOpen) Then objConn.Close

438

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 438

Connection Object Methods
This section examines the Connection object’s more important methods, all of which have self-explana-
tory names.

The Open Method
This method opens a connection to the data source, and has the following syntax:

connection.Open ConnectionString, UserID, Password, Options

The ConnectionString argument serves the same purpose as the ConnectionString property dis-
cussed in the previous section. ADO allows you to set this property in advance or pass it in at the time
you open the connection. The UserID and Password arguments can be passed separately from the con-
nection string if you wish.

The Options argument is particularly interesting. This argument allows you to make your connection
asynchronously. That is, you can tell your Connection object to go off and open the connection in the
background while your code continues to run. You do this by setting the Options argument to the
ConnectOptionEnum value adAsyncConnect. The following code sample demonstrates making an
asynchronous connection:

objConn.Open Options:=adAsyncConnect

This is especially useful in situations where you have lengthy connection times, because it allows you to
connect without freezing your application during the connection process.

The Execute Method
This method executes the command text provided to its CommandText argument. The Execute method
has the following syntax for an action query (one that does not return a resultset):

connection.Execute CommandText, [RecordsAffected], [Options]

And for a select query:

Set Recordset = connection.Execute(CommandText, _
[RecordsAffected], [Options])

The CommandText argument can contain any executable string recognized by the OLE DB provider.
However, it will most commonly contain a SQL statement. The optional RecordsAffected argument is
a return value that tells you how many records the CommandText operation has affected. It’s a good idea
to check this value against the number of records that you expected to be affected, so you can detect
potential errors in your command text.

The Options argument is crucial to optimizing the execution efficiency of your command. Therefore,
you should always use it even though it’s nominally optional. The Options argument allows you to
relay two different types of information to your OLE DB provider: what type of command is contained
in the CommandText argument, and how the provider should execute the contents of the CommandText
argument.

439

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 439

To execute the CommandText, the OLE DB provider must know what type of command it contains. If
you don’t specify the type, the provider will have to determine that information for itself. This will slow
down the execution of your query. You can avoid this by specifying the CommandText type using one of
the following CommandTypeEnum values:

❑ adCmdText— The CommandText is a raw SQL string.

❑ adCmdTable— The CommandText is the name of a table. This sends an internally generated
SQL statement to the provider that looks something like “SELECT * FROM table_name”.

❑ adCmdStoredProc— The CommandText is the name of a stored procedure (stored procedures
are covered in the section “Using ADO with Microsoft SQL Server”).

❑ adCmdTableDirect— The CommandText is the name of a table. However, unlike adCmdTable,
this option does not generate a SQL statement and therefore returns the contents of the table
more efficiently. Use this option if your provider supports it.

You can provide specific execution instructions to the provider by including one or more of the
ExecuteOptionEnum constants:

❑ adAsyncExecute— Tells the provider to execute the command asynchronously, which returns
execution to your code immediately.

❑ adExecuteNoRecords— Tells the provider not to construct a Recordset object. ADO will
always construct a recordset in response to a command, even if your CommandText argument is
not a row-returning query. To avoid the overhead required to create an unnecessary recordset,
use this value in the Options argument whenever you execute a non-row-returning query.

The CommandTypeEnum and ExecuteOptionEnum values are bit masks that can be combined together in
the Options argument using the logical Or operator. For example, to execute a plain text SQL command
and tell ADO not to construct a Recordset object, you would use the following syntax:

szSQL = “DELETE FROM Customers WHERE CustomerID = ‘XXXX’”
objConn.Execute szSQL, lNumAffected, adCmdText Or adExecuteNoRecords
If lNumAffected <> 1 Then MsgBox “Error executing SQL statement.”

The Close Method
This method closes the connection to the data source. Simply closing the connection does not destroy
the Connection object. To destroy the Connection object and free its memory, you need to set the
Connection object variable to Nothing. For example, to ensure that a Connection object variable is
closed and removed from memory, you would execute the following code:

If CBool(objConn.State And adStateOpen) Then objConn.Close
Set objConn = Nothing

Connection Object Events
Connection object events must be trapped by creating a WithEvents Connection object variable in a
class module. Trapping these events is necessary whenever you are using a Connection object asyn-
chronously, because these events are what notify your application that the Connection object has com-
pleted its task.

440

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 440

Covering asynchronous connections is beyond the scope of this chapter. However, they are important
enough to deserve mention so you can pursue them further if you like. The two most commonly used
Connection events are:

❑ ConnectComplete— Triggered when an asynchronous connection has been completed. You
can examine the arguments passed to this event to determine if the connection was successful
or not.

❑ ExecuteComplete— Triggered when an asynchronous command has finished executing.

Connection Object Collections
The Connection object has two collections, Errors and Properties.

Errors Collection
This collection contains a set of Error objects, each of which represents an OLE DB provider-specific
error (ADO itself generates run-time errors). The Errors collection can contain not only errors, but also
warnings and even messages (generated by the T-SQL PRINT statement, for instance). The Errors col-
lection is very helpful in providing extra detail when something in your ADO code has malfunctioned.
When debugging ADO problems, you can dump the contents of the Errors collection to the Immediate
window with the following code:

For Each objError In objConn.Errors
Debug.Print objError.Description

Next objError

The Properties Collection
This collection contains provider-specific, or extended properties, for the Connection object. Some
providers add important settings that you will want to be aware of. Extended properties are beyond the
scope of this chapter.

The Recordset Object
Just as the most commonly used SQL statement is the SELECT statement, the most commonly used ADO
object is the Recordset object. The Recordset object serves as a container for the records and fields
returned from a SELECT statement executed against a data source.

Recordset Object Properties
The examination of the Recordset object begins with a look at its important properties.

The ActiveConnection Property
Prior to opening the Recordset object, you can use the ActiveConnection property to assign an exist-
ing Connection object to the Recordset or a connection string for the recordset to use to connect to the
database. If you assign a connection string, the recordset will create a Connection object for itself. Once
the recordset has been opened, this property returns an object reference to the Connection object being
used by the recordset.

441

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 441

The following code assigns a Connection object to the ActiveConnection property:

Set rsData.ActiveConnection = objConn

The following code assigns a connection string to the ActiveConnection property:

rsData.ActiveConnection = “Provider=Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\Northwind 2007.accdb”

The BOF and EOF Properties
These properties indicate whether the record pointer of the Recordset object is positioned before the
first record in the recordset (BOF, or beginning of file) or after the last record in the recordset (EOF, or end
of file). If the recordset is empty, both BOF and EOF will be True. The following code example demon-
strates using these properties to determine if there is data in a recordset:

If Not rsData.EOF Then
‘ The Recordset contains data.

Else
‘ The Recordset is empty.

End If

Note that there is a difference between an empty recordset and a closed recordset. If you execute a query
that returns no data, ADO will present you with a perfectly valid open recordset, but one that contains
no data. Therefore, you should always verify that a recordset contains data using the previous method
prior to any attempt to access that data. Attempting to access data from an empty recordset will cause a
run-time error.

The CursorLocation Property
This property allows you to specify whether the server-side cursor engine or the client-side cursor
engine manages the records in the recordset. A cursor is the underlying object that manages the data in
the recordset. Certain operations require the cursor engine to be on one side or the other. This is explored
in more detail in the examples section.

This property must be set before the recordset is opened. If you do not specify a cursor location, the
default is server-side. You can set this property to one of the two CursorLocationEnum values, either
adUseClient or adUseServer. The following code sample demonstrates setting the cursor location to
client-side:

rsData.CursorLocation = adUseClient

The Filter Property
This property allows you to filter an open recordset so that only records that meet the specified condi-
tion are visible. The records that cannot be seen are not deleted, removed, or changed in any way, but are
simply hidden from normal recordset operations. This property can be set to a string that specifies the
filter you want to place on the records, or to one of the FilterGroupEnum constants.

You can set multiple filters, and the records exposed by the filtered recordset will be only those records
that meet all of the conditions. To remove the filter from the recordset, set the Filter property to an

442

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 442

empty string or the adFilterNone constant. The following code sample demonstrates filtering a record-
set so that it displays only company names that begin with the letter B. Note that the use of wildcards is
supported in a filter string:

rsData.Filter = “Company LIKE ‘B*’”

You can use the logical AND, OR, and NOT operators to set additional Filter property values:

rsData.Filter = “Company LIKE ‘B*’ AND [Country/Region] = ‘USA’”

The State Property
This is the same as the State property discussed in the section on the Connection object.

Recordset Object Methods
This section examines only five of the Recordset object’s methods, because they are the ones that you
are most likely to use.

The Open Method
This method opens the Recordset object and retrieves the data specified by the Source argument. The
Open method has the following syntax:

recordset.Open Source, ActiveConnection, CursorType, LockType, Options

The Source argument tells the recordset what data it should retrieve. This is most commonly a SQL
string or the name of a stored procedure, but can also be the name of a table or a Command object.

The ActiveConnection argument can be a connection string or a Connection object that identifies
the connection to be used. If you assign a connection string to the ActiveConnection argument, the
recordset will create a Connection object for itself.

The CursorType argument specifies the type of cursor to use when opening the recordset. This is set
using one of the CursorTypeEnum values. This chapter uses only the adOpenForwardOnly and
adOpenStatic cursor types. The first type will be used for normal queries, and using it means that the
recordset can be navigated in only one direction, from beginning to end, which is the fastest method for
accessing data. Note that the data in a forward-only recordset cannot be modified. The second type will
be used for disconnected recordsets and allows complete navigation. If you do not specify a cursor type,
adOpenForwardOnly is the default.

The LockType argument specifies what type of locks the provider should place on the underlying data
source when opening the recordset. This is set using one of the LockTypeEnum values. This chapter uses
only the following two lock types, corresponding to normal and disconnected recordsets, respectively:
adLockReadOnly and adLockBatchOptimistic.

The Options argument here is the same as the Options argument covered in the Connection object’s
Execute method earlier in the chapter. It is used to tell the provider how to interpret and execute the
contents of the Source argument.

443

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 443

The Close Method
This method closes the Recordset object. This does not free any memory used by the recordset. To free
up the memory used by the Recordset object, you must set the Recordset object variable to Nothing.

The Move Methods
When a recordset is first opened, the current record pointer is positioned on the first record in the record-
set. The Move methods are used to navigate through the records in an open recordset. They do this by
repositioning the Recordset object’s current record pointer. The following Move methods are used in
this chapter:

❑ MoveFirst— Positions the current record pointer on the first record of the recordset.

❑ MoveNext— Positions the current record pointer to the next record in the recordset.

The following code sample demonstrates common recordset navigation handling:

‘ Verify that the Recordset contains data.
If Not rsData.EOF Then

‘ Loop until we reach the end of the Recordset.
Do While Not rsData.EOF

‘ Perform some action on the current record’s data.
Debug.Print rsData.Fields(0).Value
‘ Move to the next record.
rsData.MoveNext

Loop
Else

MsgBox “Error, no records returned.”, vbCritical
End If

Pay particular attention to the use of the MoveNext method within the Do While loop. Omitting this is a
very common error and will lead to an endless loop condition in your code. The very first line of code
that you should place in the Do While loop is the call to MoveNext.

The NextRecordset Method
Some providers allow you to execute commands that return multiple recordsets. The NextRecordset
method is used to move through these recordsets. The NextRecordset method clears the current
recordset from the Recordset object, loads the next recordset into the Recordset object, and sets the
current record pointer to the first record in that recordset. If the NextRecordset method is called and
there are no more recordsets to retrieve, the Recordset object is set to Nothing. The following code
sample demonstrates the use of the NextRecordset method:

‘ Verify that the Recordset contains more data.
Do While Not rsData Is Nothing

‘ Loop the records in the current recordset.
Do While Not rsData.EOF

‘ Perform some action on the current record’s data.
Debug.Print rsData.Fields(0).Value
‘ Move to the next record.
rsData.MoveNext

Loop

444

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 444

‘ Return the next recordset
Set rsData = rsData.NextRecordset

Loop

Recordset Object Events
Recordset object events must be trapped by creating a WithEvents Recordset object variable in a class
module. Trapping these events is necessary whenever you are using a Recordset object asynchronously,
because these events are what notify your application that the Recordset object has completed its task.

Covering asynchronous recordset usage is beyond the scope of this chapter; however, the topic is impor-
tant enough to deserve mention so that you can pursue it further if you like. The two most commonly
used Recordset object events are:

❑ FetchComplete— This event is fired after all of the records have been retrieved when opening
an asynchronous recordset.

❑ FetchProgress— The provider fires this event periodically to report the number of records
retrieved so far during an asynchronous open operation. It is typically used to provide a visual
progress indicator to the user.

Recordset Object Collections
Finish your look at the Recordset object by examining its collections.

The Fields Collection
The Fields collection contains the values, and information about those values, from the current
record in a Recordset object. In Excel, the Fields collection is most commonly used to return the col-
umn names of each field in the recordset, prior to accessing the contents of the recordset using the
CopyFromRecordset method of the Range object. The following example demonstrates how to read
the field names from the Fields collection of a Recordset object:

With Sheet1.Range(“A1”)
For Each objField In rsData.Fields

.Offset(0, lOffset).Value = objField.Name
lOffset = lOffset + 1

Next objField
End With

The Properties Collection
This collection contains provider-specific or extended properties for the Recordset object. Some
providers add important settings — called extended properties — that you will want to be aware of. The
most important extended properties of each provider are covered in that provider’s section.

The Command Object
The Command object is most commonly used for executing action queries. Action queries are queries that
perform some action on the data source and do not return a resultset. Action queries include INSERT,
UPDATE, and DELETE statements.

445

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 445

Command Object Properties
Begin by looking at the three most important Command object properties.

The ActiveConnection Property
This property is identical to the ActiveConnection property discussed in the section on the Recordset
object.

The CommandText Property
This property is used to set the command that will be executed by the data provider. This property will
normally be a SQL string or the name of a stored procedure. As you will see in the section on SQL Server,
you must use the CommandText property along with the Parameters collection to take advantage of
return values and output parameters in SQL Server stored procedures.

The CommandType Property
The CommandType property is identical to the Options argument to the Connection object’s Execute
method, covered earlier in the chapter. It is used to tell the provider how to interpret and execute the
Command object’s CommandText.

Command Object Methods
Only two of the Command object’s methods are examined, because they are the most commonly used.

The CreateParameter Method
This method is used to manually create Parameter objects that can then be added to the Command
object’s Parameters collection. The CreateParameter object has the following syntax:

Set Parameter = command.CreateParameter([Name], [Type], [Direction], _
[Size], [Value])

Name is the name of the parameter object. You can use this name to reference the Parameter object
through the Command object’s Parameters collection. When working with SQL Server, the name of a
Parameter should be the same as the name of the stored procedure argument that it corresponds to.

Type indicates the data type of the parameter. It is specified as one of the DataTypeEnum constants.
There are several dozen possible data types, so I will not go into them in any detail here. You will see a
few of them in the examples section. The rest can be located in the ADO help file.

Direction is a ParameterDirectionEnum value that indicates whether the parameter will be used to
pass data to an input argument, receive data from an output argument, or accept a return value from a
stored procedure. Direction can be one of the following values:

❑ adParamInput— The parameter represents an input argument

❑ adParamInputOutput— The parameter represents an input/output argument

❑ adParamOutput— The parameter represents an output argument

❑ adParamReturnValue— The parameter represents a return value

446

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 446

Size is used to specify the size of Parameter in bytes, and is dependent on Parameter’s data type.

Value is used to provide an initial value for the Parameter.

The following code sample demonstrates how you can use the CreateParameter method in conjunc-
tion with the Parameters collection Append method to create a Parameter and append it to the
Parameters collection with one line of code:

objCmd.Parameters.Append _
objCmd.CreateParameter(“MyParam”, adInteger, adParamInput, 0)

The Execute Method
This method executes the text contained in the Command object’s CommandText property. The Execute
method has the following syntax for an action query (one that does not return a resultset):

command.Execute [RecordsAffected], [Parameters], [Options]

And for a select query:

Set Recordset = command.Execute([RecordsAffected], [Parameters], [Options])

The RecordsAffected and Options arguments are identical to the corresponding arguments for the
Connection object’s Execute method, described in the “Connection Object Methods” section. If you are
executing a SQL statement that requires one or more parameters to be passed, you can supply an array
of values to the Parameters argument, one for each parameter required.

Command Object Collections
The final section before delving into ADO in Excel covers the Command object’s two collections.

The Parameters Collection
This collection contains all of the Parameter objects associated with the Command object. Parameters are
used to pass arguments to SQL statements and stored procedures, as well as to receive output and return
values from stored procedures.

The Properties Collection
This collection contains provider-specific or extended properties for the Command object. Some providers
add important settings that you will want to be aware of. The most important extended properties of
each provider are covered in the provider-specific discussions later in the chapter.

Using ADO in Microsoft Excel Applications
Here’s where it all comes together. This section combines the understanding of Excel programming that
you’ve gained from previous chapters with the SQL and ADO techniques discussed so far in this chap-
ter. Excel applications frequently require data from outside sources. The most common of these sources
are Access and SQL Server databases. However, I’ve created applications that required source data from
mainframe text file dumps and even Excel workbooks. As you’ll see, ADO makes acquiring data from
these various data sources easy.

447

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 447

To run the code examples shown in the sections that follow, you must set a reference from your Excel
project to the ADO 2.5 Object Library. To do this, bring up the References dialog by selecting the Tools ➪

References menu item from within the VBE. Scroll down until you locate the entry labeled Microsoft
ActiveX Data Objects 2.5 Library. Place a check mark beside this entry and click OK (see Figure 20-4).

Figure 20-4

Note that it’s perfectly normal to have multiple versions of the ADO object library available.

Using ADO with Microsoft Access
Because Excel applications that utilize data from Microsoft Access tend to have less complicated data
access requirements than those using SQL Server, Access is used to introduce the basics of ADO.

Connecting to Microsoft Access
ADO connects to Microsoft Access databases through the use of the Microsoft Office 12 Access Database
Engine OLE DB Provider. To connect to a Microsoft Access database, you simply specify this provider in
the ADO connection string and then include any additional provider-specific arguments required. The
following is a summary of the connection string arguments you will most frequently use when connect-
ing to an Access database:

❑ Provider=Microsoft.ACE.OLEDB.12.0 (required)

❑ Data Source=[full path and filename to the Access database] (required)

In this section you’ll utilize the Northwind database. This is a sample database pro-
vided with Microsoft Access 2007. If you don’t have this database available, you will
need to install it to run the example code.

448

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 448

❑ Mode=mode (optional) — The three most commonly used settings for this property are:

❑ adModeShareDenyNone— Opens the database and allows complete shared access to
other users. This is the default setting if the Mode argument is not specified.

❑ adModeShareDenyWrite— Opens the database and allows other users read access but
prevents write access.

❑ adModeShareExclusive— Opens the database in exclusive mode, which prevents
any other users from connecting to the database.

❑ User ID=username (optional) — The username to use when connecting to the database. If the
database requires a username and it is not supplied, the connection will fail.

❑ Password=password (optional) — If a password is required to connect to the database, this
argument is used to supply it. Again, the connection will fail if it is required and not supplied,
or is incorrect.

The following example shows a connection string that uses all of these arguments:

Public Const gsCONNECTION As String = _
“Provider= Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\Northwind 2007.accdb;” & _
“Mode=Share Exclusive;” & _
“User ID=Admin;” & _
“Password=password”

Retrieving Data from Microsoft Access Using a Plain Text Query
The following procedure demonstrates how to retrieve data from a Microsoft Access database using a
plain text (sometimes referred to as ad hoc) query and place it on an Excel worksheet:

Public Sub PlainTextQuery()

Dim rsData As ADODB.Recordset
Dim sConnect As String
Dim sSQL As String

‘ Create the connection string.
sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Northwind 2007.accdb”

‘ Create the SQL Statement.
sSQL = “SELECT Company, [First Name] + ‘ ‘ + [Last Name] “ & _

“FROM Customers “ & _
“WHERE [Country/Region] = ‘USA’ “ & _
“ORDER BY Company;”

‘ Create the Recordset object and run the query.
Set rsData = New ADODB.Recordset
rsData.Open sSQL, sConnect, adOpenForwardOnly, _

adLockReadOnly, adCmdText

‘ Make sure we got records back

449

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 449

If Not rsData.EOF Then
‘ Dump the contents of the recordset onto the worksheet.
Sheet1.Range(“A2”).CopyFromRecordset rsData
‘ Close the Recordset object.
rsData.Close
‘ Add headers to the worksheet.
With Sheet1.Range(“A1:B1”)

.Value = Array(“Company”, “Contact Name”)

.Font.Bold = True
End With
‘ Fit the column widths to the data.
Sheet1.UsedRange.EntireColumn.AutoFit

Else
‘ Close the Recordset object.
rsData.Close
MsgBox “Error: No records returned.”, vbCritical

End If

‘ Destroy the Recordset object.
Set rsData = Nothing

End Sub

There are a number of things to note about this procedure:

❑ The only ADO object used was the Recordset object. As mentioned at the beginning of the
ADO section, all of the top-level ADO objects can be created and used independently. If you
were going to perform multiple queries over the course of your application, you would have
created a separate, publicly scoped Connection object to take advantage of ADO’s connection-
pooling feature.

❑ The syntax of the Recordset.Open method has been optimized for maximum performance.
You’ve told the provider what type of command is in the Source argument (adCmdText, a plain
text query), and you’ve opened a forward-only, read-only, server-side cursor (server-side is the
default if the Recordset.CursorLocation property is not specified). This type of cursor is
often referred to as a firehose cursor, because it’s the fastest way to retrieve data from a database.

❑ You do not make any modifications to the destination worksheet until you are sure you have
successfully retrieved data from the database. This avoids having to undo anything if the
query fails.

❑ You dump the data onto the destination worksheet and close the recordset as quickly as possi-
ble. In most data-access situations, you will be dealing with a multi-user environment, where
multiple users can access the database simultaneously. Getting in and out of the database as
quickly as possible is critical to preventing contention problems, or situations in which two
users attempt to perform mutually incompatible actions on the same piece of data at the same
time.

❑ Note the use of the CopyFromRecordset method of the Excel Range object. This is by far the
fastest method for moving data out of a recordset and onto a worksheet. As you’ll see, it doesn’t
fit every data-access situation, but it’s the method of choice in any situation where its use is pos-
sible. Note that the CopyFromRecordset method does not copy the field names, only data.

450

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 450

Retrieving Data from Microsoft Access Using a Stored Query
Microsoft Access allows you to create and store SQL queries in the database. You can retrieve data from
these stored queries just as easily as you can use a plain text SQL statement. The following procedure
demonstrates this:

Public Sub SavedQuery()

Dim objField As ADODB.Field
Dim rsData As ADODB.Recordset
Dim lOffset As Long
Dim sConnect As String

‘ Create the connection string.
sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Northwind 2007.accdb”

‘ Create the Recordset object and run the query.
Set rsData = New ADODB.Recordset
rsData.Open “[Product Sales By Category]”, sConnect, _

adOpenForwardOnly, adLockReadOnly, adCmdTable

‘ Make sure we got records back
If Not rsData.EOF Then

‘ Add headers to the worksheet.
With Sheet1.Range(“A1”)

For Each objField In rsData.Fields
.Offset(0, lOffset).Value = objField.Name
lOffset = lOffset + 1

Next objField
.Resize(1, rsData.Fields.Count).Font.Bold = True

End With
‘ Dump the contents of the recordset onto the worksheet.
Sheet1.Range(“A2”).CopyFromRecordset rsData
‘ Close the Recordset object.
rsData.Close
‘ Fit the column widths to the data.
Sheet1.UsedRange.EntireColumn.AutoFit

Else
‘ Close the Recordset object.
rsData.Close
MsgBox “Error: No records returned.”, vbCritical

End If

‘ Destroy the Recordset object.
Set rsData = Nothing

End Sub

There are two important points to note about this procedure:

❑ Examine the differences between the Recordset.Open method used in this procedure and the
one used in the plain text query. In this case, rather than providing a SQL string, you specified
the name of the stored query you wanted to execute. You also told the provider that the type of

451

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 451

query being executed was a table query. The Access OLE DB provider treats stored queries and
queries of entire database tables in the same manner.

❑ Because you did not create the SQL statement yourself, you did not know the names of the
fields you were retrieving, or even how many fields there were. Therefore, to create the correct
set of headers for each column in the destination worksheet, you needed to loop the Fields
collection of the Recordset object and determine this information dynamically. To accomplish
this, the recordset had to be open, so you added the fields to the worksheet prior to closing the
recordset.

Inserting, Updating, and Deleting Records
with Plain Text SQL in Microsoft Access

Executing plain text INSERT, UPDATE, and DELETE statements uses virtually identical methodology.
Therefore, you’ll examine these action queries by inserting a new record, updating that record, and then
deleting it, all within the same procedure. This, of course, is not normally something you would do. You
can take this generic procedure, however, and create a single-purpose insert, update, or delete procedure
by simply removing the sections that you don’t need.

Use the Shippers table from the Northwind database in the next procedure. The first few columns of
this table are shown in Figure 20-5.

Figure 20-5

Notice that the last row in the ID column contains the value (New). This isn’t really a value; rather, it’s a
prompt that alerts you to the fact that values for the ID column are automatically generated by the
Access database. This column is the primary key for the Shippers table, and AutoNumber fields are a
common method used to generate the unique value required for the primary key. You don’t (and can’t)
set or change the value of an AutoNumber field. If you need to maintain a reference to a new record that
you’ve inserted into the table, you’ll need to retrieve the value that was assigned to that record by the
AutoNumber field. You’ll see how this is done in the example that follows:

Public Sub InsertUpdateDelete()

Dim objCommand As ADODB.Command
Dim rsData As ADODB.Recordset
Dim lRecordsAffected As Long
Dim lKey As Long

452

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 452

Dim sConnect As String

On Error GoTo ErrorHandler

‘ Create the connection string.
sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Northwind 2007.accdb;” & _
“Mode=Share Exclusive”

‘ Create the Command object we’ll use for all three queries.
Set objCommand = New ADODB.Command
objCommand.ActiveConnection = sConnect

‘’’’’ INSERT a new record into the database ‘’’’’’’’’’’’’’’’’’’
‘ Load the SQL string into the Command object.
objCommand.CommandText = “INSERT INTO Shippers” & _

“(Company, [Business Phone]) “ & _
“VALUES(‘Air Carriers’, ‘(205) 555-1212’);”

‘ Execute the SQL statement.
objCommand.Execute RecordsAffected:=lRecordsAffected, _

Options:=adCmdText Or adExecuteNoRecords
‘ Check for errors. Only one record should have been affected.
If lRecordsAffected <> 1 Then Err.Raise _

Number:=vbObjectError + 1024, _
Description:=”Error executing INSERT statement.”

‘ Retrieve the primary key generated for our new record.
objCommand.CommandText = “SELECT @@IDENTITY;”
Set rsData = objCommand.Execute(Options:=adCmdText)
‘ Check for errors. The recordset should contain data.
If rsData.EOF Then Err.Raise _

Number:=vbObjectError + 1024, _
Description:=”Error retrieving primary key value.”

‘ Store the primary key value for later use.
lKey = rsData.Fields(0).Value
rsData.Close

‘’’’’ UPDATE the record we just created ‘’’’’’’’’’’’’’’’’’’
‘ Load the SQL string into the Command object.
objCommand.CommandText = “UPDATE Shippers “ & _

“SET [Business Phone]=’(206) 546-0086’ “ & _
“WHERE ID=” & CStr(lKey) & “;”

‘ Execute the SQL statement.
objCommand.Execute RecordsAffected:=lRecordsAffected, _

Options:=adCmdText Or adExecuteNoRecords
‘ Check for errors. Only one record should have been affected.
If lRecordsAffected <> 1 Then Err.Raise _

Number:=vbObjectError + 1024, _
Description:=”Error executing UPDATE statement.”

‘’’’’ DELETE our record from the database ‘’’’’’’’’’’’’’’’’’’
‘ Load the SQL string into the Command object.
objCommand.CommandText = “DELETE FROM Shippers “ & _

“WHERE ID = “ & CStr(lKey) & “;”
‘ Execute the SQL statement.
objCommand.Execute RecordsAffected:=lRecordsAffected, _

453

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 453

Options:=adCmdText Or adExecuteNoRecords
‘ Check for errors. Only one record should have been affected.
If lRecordsAffected <> 1 Then Err.Raise _

Number:=vbObjectError + 1024, _
Description:=”Error executing DELETE statement.”

ErrorExit:

‘ Destroy our ADO objects.
Set objCommand = Nothing
Set rsData = Nothing

Exit Sub

ErrorHandler:
MsgBox Err.Description, vbCritical
Resume ErrorExit

End Sub

Quickly review what you’ve done in this procedure. First you inserted a new record into the Shippers
table. Then you retrieved the primary key that had been assigned to that new record by the database
(more on this in a moment). Next you used the primary key of your new record to locate it and modify
the telephone number in its Business Phone field. Finally, you used the primary key of the record to
locate it and delete it from the database.

Important things to note about this procedure:

❑ You used the same ADO Command object throughout the procedure. All that was required to
execute different commands was to load new SQL statements into the Command.CommandText
property.

❑ The process of preparing and executing the command and then checking for errors upon com-
pletion was identical for all three types of action query.

❑ After inserting a new record in the first part of the procedure, you needed to retrieve the pri-
mary key value that had been assigned to that record by the ID AutoNumber field. You did this
by querying the value of the @@IDENTITY system variable. This is a variable maintained by
the Access database that holds the value of the most recently assigned AutoNumber field. In
most cases, you must be sure to query this value immediately after performing the insert. The
@@IDENTITY variable is a database-wide variable, so your primary key value will be overwrit-
ten if any other user performs a similar insert before you query it. You prevented the possibility
of this occurring in this example by opening the database in exclusive mode (note the Mode
argument in the connection string).

Using ADO with Microsoft SQL Server
The previous section on Microsoft Access covered the basics of performing the various types of queries
in ADO. Because ADO is designed to present a common gateway to different data sources, there isn’t a
lot of difference in these basic operations whether your database is in Access or in SQL Server. Therefore,
after a brief introduction to the few important differences that arise when using ADO with SQL Server,
this section covers more advanced topics, including stored procedures, multiple recordsets, and discon-
nected recordsets.

454

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 454

Connecting to Microsoft SQL Server
To connect to a Microsoft SQL Server database, you simply specify the OLE DB provider for SQL Server
in the ADO connection string, and then include any additional provider-specific arguments required.
The following is a summary of the connection string arguments you will most frequently use when con-
necting to a SQL Server database:

❑ Provider=SQLOLEDB;

❑ Data Source=server name;— This will typically be the NetBIOS name of the computer that
SQL Server is installed on. If SQL Server is installed as a named instance, the server name will
have the following syntax: NetBIOS Name\SQL Server Instance Name.

❑ Initial Catalog=database name;— Unlike Access, one instance of SQL Server can contain
many databases. This argument will contain the name of the database you want to connect to.

❑ User ID=username;— The username for SQL Server authentication.

❑ Password=password;— The password for SQL Server authentication.

❑ Network Library=netlib;— By default, the SQL Server OLE DB provider will attempt to use
named pipes network protocol to connect to SQL Server. This is required for using Windows inte-
grated security (explained later). There are many instances, however, where it is not possible to
use named pipes. These include accessing SQL Server from a Windows 9x operating system and
accessing SQL Server over the Internet. In these cases, the preferred protocol for connecting to
SQL Server is TCP/IP. This can be specified on each machine by using the SQL Server Client
Network Utility, or you can simply use the Network Library connection string argument to
specify the name of the TCP/IP network library, which is dbmssocn.

❑ Integrated Security=SSPI;— This connection string argument specifies that you want to
use Windows integrated security rather than SQL Server authentication. The User ID and
Password arguments will be ignored if this argument is present.

A Note About SQL Server Security

SQL Server can be set to use three types of security: SQL Server authentication,
Windows integrated security, and mixed mode. SQL Server authentication means
that separate user accounts must be added to SQL Server, and each user must supply
a SQL Server username and password to connect.

This type of security is most commonly used when SQL Server must be accessed
from outside the network. With Windows integrated security, SQL Server recognizes
the same usernames and passwords that are used to log in to the Windows network.
Mixed mode simply means you can use either one of the two.

The examples in this section use the SQL Server version of the Northwind sample
database. This database is similar to the Access 2007 version of Northwind used pre-
viously, but there will be some differences in the names and data types of various
fields.

455

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 455

Following are examples of two different SQL Server connection strings. The first example shows a con-
nection string that uses SQL Server authentication and the TCP/IP connection protocol. The second
example shows a connection string that uses Windows integrated security:

Public Const gsCONNECTION As String = _
“Provider=SQLOLEDB;” & _
“Data Source=ComputerName\SQLServerName;” & _
“Initial Catalog=Northwind;” & _
“User ID=User;Password=password;” & _
“Network Library=dbmssocn”

Public Const gsCONNECTION As String = _
“Provider=SQLOLEDB;” & _
“Data Source=ComputerName\SQLServerName;” & _
“Initial Catalog=Northwind;” & _
“Integrated Security=SSPI”

Microsoft SQL Server Stored Procedures
The syntax for executing plain text (or ad hoc) queries against SQL Server is identical to that which you
used in the example for Access. The only difference is the contents of the connection string. When pro-
gramming with SQL Server, however, it is more common to call SQL Server stored procedures.

Stored procedures are simply precompiled SQL statements that can be accessed by name from the
database. They are much like VBA procedures in that they can accept arguments and return values. An
example of a simple stored procedure that queries the Customers table is shown here:

CREATE PROC spGetCustomerNames
@Country nvarchar(24)

AS
SELECT CustomerID,

CompanyName,
ContactName

FROM Customers
WHERE Country = @Country
ORDER BY CompanyName

This stored procedure takes one argument, @Country, and returns a recordset containing the values for
the fields specified in the SELECT list for customers whose country matches the value passed to the
@Country argument.

ADO provides a very quick and simple way to execute stored procedures using the Connection object.
ADO treats all stored procedures in the currently connected database as dynamic methods of the
Connection object. You can call a stored procedure exactly like any other Connection object method,
passing any arguments to the stored procedure as method arguments, and optionally passing a
Recordset object as the last argument if the stored procedure returns a recordset.

This method is best used for “one-off” procedures rather than those you will execute multiple times,
because it isn’t the most efficient method. However, it is significantly easier to code. The following
example demonstrates executing the previous stored procedure as a method of the Connection object:

456

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 456

Public Sub ExecuteStoredProcAsMethod()

Dim objConn As ADODB.Connection
Dim rsData As ADODB.Recordset
Dim sConnect As String

‘ Create the connection string.
sConnect = “Provider=SQLOLEDB;Data Source=P2800\P2800;” & _

“Initial Catalog=Northwind;Integrated Security=SSPI”

‘ Create the Connection and Recordset objects.
Set objConn = New ADODB.Connection
Set rsData = New ADODB.Recordset

‘ Open the connection and execute the stored procedure.
objConn.Open sConnect
objConn.spGetCustomerNames “UK”, rsData

‘ Make sure we got records back
If Not rsData.EOF Then

‘ Dump the contents of the recordset onto the worksheet.
Sheet1.Range(“A1”).CopyFromRecordset rsData
‘ Close the recordset
rsData.Close
‘ Fit the column widths to the data.
Sheet1.UsedRange.EntireColumn.AutoFit

Else
MsgBox “Error: No records returned.”, vbCritical

End If

‘ Clean up our ADO objects.
If CBool(objConn.State And adStateOpen) Then objConn.Close
Set objConn = Nothing
Set rsData = Nothing

End Sub

In this procedure, you executed the spGetCustomerNames stored procedure and passed it the value
“UK” for its @Country argument. This populated the rsData recordset with all of the customers located
in the UK. Note that the Connection object must be opened before the dynamic methods are populated,
and that you must instantiate the Recordset object prior to passing it as an argument.

The most efficient way to handle stored procedures that will be executed multiple times is to prepare
a publicly scoped Command object to represent them. The Connection will be stored in the Command
object’s ActiveConnection property, the stored procedure’s name will be stored in the Command
object’s CommandText property, and any arguments to the stored procedure will be used to populate
the Command object’s Parameters collection.

Once this Command object has been created, it can be executed as many times as you like over the course
of your application, without incurring the overhead required to perform the tasks just described with
each execution.

457

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 457

For this example, create a simple stored procedure that you can use to insert new records into the
Shippers table:

CREATE PROC spInsertShippers
@CompanyName nvarchar(40),
@Phone nvarchar(24)

AS
INSERT INTO Shippers(CompanyName, Phone)
VALUES(@CompanyName, @Phone)
RETURN @@IDENTITY

As you can see, the stored procedure has two arguments, @CompanyName and @Phone, which are used to
collect the values to insert into those respective fields in the Shippers table. Similar to the ID field in the
Access version of the Northwind database, the ShipperID field in the SQL Server version of Northwind
is populated automatically by the database any time a new record is inserted. You retrieve this automati-
cally assigned value in a similar fashion, through the use of SQL Server’s @@IDENTITY system function.
In this case, however, you won’t have to make a separate query to retrieve the Shipper ID value because
it will be returned to you by the stored procedure.

To present a more realistic application scenario, the following example uses publicly scoped Connection
and Command objects, procedures to create and destroy the connection, a procedure to prepare the Command
object for use, and a procedure that demonstrates how to use the Command object:

Public Const gszCONNECTION As String = _
“Provider=SQLOLEDB;Data Source=P2800\P2800;” & _
“Initial Catalog=Northwind;Integrated Security=SSPI”

Public gobjCmd As ADODB.Command
Public gobjConn As ADODB.Connection

Private Sub CreateConnection()
‘ Create the Connection object.
Set gobjConn = New ADODB.Connection
gobjConn.Open gszCONNECTION

End Sub

Private Sub DestroyConnection()
‘ Check to see if connection is still open before attempting to close it.
If CBool(gobjConn.State And adStateOpen) Then gobjConn.Close
Set gobjConn = Nothing

End Sub

Private Sub PrepareCommandObject()

‘ Create the Command object.
Set gobjCmd = New ADODB.Command
Set gobjCmd.ActiveConnection = gobjConn
gobjCmd.CommandText = “spInsertShippers”
gobjCmd.CommandType = adCmdStoredProc

‘ Load the parameters collection. The first parameter
‘ is always the stored procedure return value.
gobjCmd.Parameters.Append _

458

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 458

gobjCmd.CreateParameter(“@RETURN_VALUE”, adInteger, _
adParamReturnValue, 0)

gobjCmd.Parameters.Append _
gobjCmd.CreateParameter(“@CompanyName”, adVarWChar, _

adParamInput, 40)
gobjCmd.Parameters.Append _

gobjCmd.CreateParameter(“@Phone”, adVarWChar, _
adParamInput, 24)

End Sub

Public Sub UseCommandObject()

Dim lKeyValue As Long
Dim lNumAffected As Long

On Error GoTo ErrorHandler

‘ Create the Connection and the reusable Command object.
CreateConnection
PrepareCommandObject

‘ Set the values of the input parameters.
gobjCmd.Parameters(“@CompanyName”).Value = “Air Carriers”
gobjCmd.Parameters(“@Phone”).Value = “(206) 555-1212”

‘ Execute the Command object and check for errors.
gobjCmd.Execute Recordsaffected:=lNumAffected, _

Options:=adExecuteNoRecords
If lNumAffected <> 1 Then Err.Raise Number:=vbObjectError + 1024, _

Description:=”Error executing Command object.”

‘ Retrieve the primary key value for the new record.
lKeyValue = gobjCmd.Parameters(“@RETURN_VALUE”).Value
Debug.Print “The key value of the new record is: “ & CStr(lKeyValue)

ErrorExit:

‘ Destroy the Command and Connection objects.
Set gobjCmd = Nothing
DestroyConnection

Exit Sub

ErrorHandler:
MsgBox Err.Description, vbCritical
Resume ErrorExit

End Sub

A few things to note about the mini application:

❑ In a normal application, you would not create and destroy the Connection and Command objects
in the UseCommandObject procedure. These objects are intended for reuse and therefore typically
would be created when your application first started and destroyed just before it ended.

459

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 459

❑ When constructing and using the Command object’s Parameters collection, keep in mind that
the first parameter is always reserved for the stored procedure return value, even if the stored
procedure doesn’t have a return value.

❑ Even though you didn’t make any particular use of the Shipper ID value returned from the stored
procedure for the new record, in a normal application this value would be very important. The
CompanyName and Phone fields are for human consumption; the primary key value is how the
database identifies the record. For example, in the Northwind database, the Shipper ID is a
required field for entering new records into the Orders table. Therefore, if you planned on add-
ing an order that was going to use the new shipper, you would have to know the Shipper ID.

Multiple Recordsets
The SQL Server OLE DB provider is an example of a provider that allows you to execute a SQL state-
ment that returns multiple recordsets. This feature comes in very handy when you need to populate
multiple controls on a form with lookup-table information from the database. You can combine all of the
lookup-table SELECT queries into a single stored procedure and then loop through the individual record-
sets, assigning their contents to the corresponding controls.

For example, if you needed to create a user interface for entering information into the Orders table, you
would need information from several related tables, including Customers and Shippers, as shown in
Figure 20-6.

Figure 20-6

Create an abbreviated example of a stored procedure that returns the lookup information from these two
tables, and then use the result to populate drop-downs on a UserForm:

CREATE PROC spGetLookupValues
AS

-- Customers lookup table info.
SELECT CustomerID,

CompanyName
FROM Customers

-- Shippers lookup table info.
SELECT ShipperID,

CompanyName
FROM Shippers

Note that this stored procedure contains two separate SELECT statements. These will populate two inde-
pendent recordsets when the stored procedure is executed using ADO. The double dashes that you see
at the beginning of the lines above each SELECT statement are T-SQL comment prefixes.

460

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 460

The following procedure is an example of a UserForm_Initialize event that populates drop-downs
on the UserForm with the results of the spGetLookupValues stored procedure. For the purpose of this
example, assume that the public Connection object gobjConn used in the previous example is still open
and available for use:

Private Sub UserForm_Initialize()

Dim rsData As ADODB.Recordset

‘ Create and open the Recordset object.
Set rsData = New ADODB.Recordset
rsData.Open “spGetLookupValues”, gobjConn, _

adOpenForwardOnly, adLockReadOnly, adCmdStoredProc

‘ The first recordset contains the customer list.
Do While Not rsData.EOF

‘ Load the dropdown with the recordset values.
ddCustomers.AddItem rsData.Fields(1).Value
rsData.MoveNext

Loop
Set rsData = rsData.NextRecordset

‘ The second recordset contains the shippers list.
Do While Not rsData.EOF

‘ Load the dropdown with the recordset values.
ddShippers.AddItem rsData.Fields(1).Value
rsData.MoveNext

Loop
Set rsData = rsData.NextRecordset

‘ No need to clean up the Recordset object at this point,
‘ it will be closed and set to nothing after the last
‘ call to the NextRecordset method.

End Sub

One thing to note about the method demonstrated here is that it requires prior knowledge of the number
and order of recordsets returned by the call to the stored procedure. Also left out is any handling of the
primary key values associated with the lookup table descriptions. In a real-world application, you
would need to maintain these keys (I prefer using a hidden column in a multi-column drop-down for
this purpose) so you could retrieve the primary key value that corresponded to the user’s selection in
each drop-down.

Disconnected Recordsets
The “Retrieving Data from Microsoft Access Using a Plain Text Query” section mentioned that getting in
and out of the database as quickly as possible was an important goal. However, the Recordset object is
a powerful tool that you would often like to hold onto and use without locking other users out of the
database. The solution to this problem is the ADO disconnected recordset feature.

A disconnected recordset is a Recordset object whose connection to its data source has been severed,
but that can still remain open. The result is a fully functional Recordset object that does not hold any
locks in the database from which it was queried. Disconnected recordsets can remain open as long as

461

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 461

you need them, they can be reconnected to and resynchronized with the data source, and they can even
be persisted to disk for later retrieval. A few of these capabilities are examined in the following example.

Imagine you wanted to implement a feature that would allow users to view any group of customers
they chose. Running a query against the database each time the user specified a different criterion would
be an inefficient way to accomplish this. A much better alternative would be to query the complete set of
customers from the database and hold them in a disconnected recordset. You could then use the Filter
property of the Recordset object to quickly extract the set of customers that your user requested.

The following example shows all of the elements required to create a disconnected recordset. Again,
assume the availability of the public gobjConn Connection object:

Public grsData As ADODB.Recordset

Public Sub CreateDisconnectedRecordset ()

Dim szSQL As String

‘ Create the SQL Statement.
szSQL = “SELECT CustomerID, CompanyName, ContactName, Country “ & _

“FROM Customers”

‘ Steps to creating a disconnected recordset:
‘ 1) Create the Recordset object.
Set grsData = New ADODB.Recordset
‘ 2) Set the cursor location to client side.
grsData.CursorLocation = adUseClient
‘ 3) Set the cursor type to static.
grsData.CursorType = adOpenStatic
‘ 4) Set the lock type to batch optimistic.
grsData.LockType = adLockBatchOptimistic
‘ 5) Open the recordset.
grsData.Open szSQL, gobjConn, , , adCmdText
‘ 6) Set the Recordset’s Connection object to Nothing.
Set grsData.ActiveConnection = Nothing

‘ grsData is now a disconnected recordset.
Sheet1.Range(“A1”).CopyFromRecordset grsData

End Sub

Note that the Recordset object variable in the preceding example is declared with public scope. If you
were to declare the Recordset object variable at the procedure level, VBA would automatically destroy
it when the procedure ended and it would no longer be available for use.

Six crucial steps are required to successfully create a disconnected recordset. It’s possible to combine sev-
eral of them into one step during the Recordset.Open method, and it’s more efficient to do so, but they
are separated here for the sake of clarity:

❑ You must create a new, empty Recordset object to start with.

❑ You must set the cursor location to client-side. Because the recordset will be disconnected from
the server, the cursor cannot be managed there. Note that this setting must be made before you
open the recordset. It is not possible to change the cursor location once the recordset is open.

462

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 462

❑ The ADO client-side cursor engine supports only one type of cursor, the static cursor, so this is
what the CursorType property must be set to.

❑ ADO has a lock type specifically designed for disconnected recordsets called Batch Optimistic.
The Batch Optimistic lock type makes it possible to reconnect the disconnected recordset to the
database and update the database with records that have been modified while the recordset was
disconnected. This operation is beyond the scope of this chapter, so note that the Batch Optimistic
lock type is required in order to create a disconnected recordset.

❑ Opening the recordset is the next step. This example used a plain text SQL query. This is not a
requirement. You can create a disconnected recordset from almost any source that can be used to
create a standard recordset. The client-side cursor engine lacks a few capabilities, however; mul-
tiple recordsets are one example.

❑ The final step is disconnecting the recordset from the data source. This is accomplished by set-
ting the recordset’s Connection object to Nothing. If you recall from the “Recordset Object
Properties” section, the Connection object associated with a Recordset object is accessed
through the Recordset.ActiveConnection property. Setting this property to Nothing severs
the connection between the recordset and the data source.

Now that you have a disconnected recordset to work with, what kinds of things can you do with it? Just
about any operation the Recordset object allows. Say that the user wanted to see a list of customers
located in Germany, sorted by alphabetical order. This is how you’d accomplish that task:

‘ Set the Recordset filter to display only records
‘ whose Country field is Germany.
grsData.Filter = “Country = ‘Germany’”
‘ Sort the records by CompanyName.
grsData.Sort = “CompanyName”
‘ Load the processed data onto Sheet1
Sheet1.Range(“A1”).CopyFromRecordset grsData

If you are working in a busy multi-user environment, the data in your disconnected recordset may become
out-of-date during the course of your application due to other users inserting, updating, and deleting
records. You can solve this problem by requerying the recordset. As demonstrated by the following exam-
ple, this is a simple matter of reconnecting to the data source, executing the Recordset.Requery method,
then disconnecting from the data source:

‘ Reconnect to the data source.
Set grsData.ActiveConnection = gobjConn
‘ Rerun the Recordset object’s underlying query,
grsData.Requery Options:=adCmdText
‘ Disconnect from the data source.
Set grsData.ActiveConnection = Nothing

Using ADO with Non-Standard Data Sources
This section describes how you can use ADO to access data from two common non-standard data sources
(data sources that are not strictly considered databases), Excel workbooks, and text files. Although the idea
may seem somewhat counterintuitive, ADO is often the best choice for retrieving data from workbooks
and text files because it eliminates the often lengthy process of opening them in Excel. Using ADO also
allows you to take advantage of the power of SQL to do exactly what you want in the process.

463

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 463

Querying Microsoft Excel Workbooks
When using ADO to access data from Excel 2007 workbooks, you use the same OLE DB provider that
you used earlier in this chapter to access data from Microsoft Access 2007. In addition to Access, this
provider also supports most ISAM data sources (data sources that are laid out in a tabular, row and col-
umn format). You will use the Sales.xlsx workbook, shown in Figure 20-7, as the data source for the
Excel examples.

Figure 20-7

When using ADO to work with Excel, the workbook file takes the place of the database, while work-
sheets within the workbook, as well as named ranges, serve as tables. Compare a connection string used
to connect to an Access database with a connection string used to connect to an Excel workbook.

Connection string to an Access database:

sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\Northwind 2007.accdb;”

Connection string to an Excel workbook:

sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\Sales.xlsx;” & _
“Extended Properties=Excel 12.0;”

Note that the same provider is used, and that the full path and filename of the Excel workbook takes the
place of the full path and filename of the Access database. The only difference is that you must specify
the type name of the data source you want to connect to in the Extended Properties argument. When
connecting to Excel 2007, you set the Extended Properties argument to Excel 12.0. For versions of
Excel earlier than 2007, you set the Extended Properties argument to Excel 8.0.

You query data from an Excel worksheet using a plain text SQL statement exactly like you would query
a database table. However, the format of the table name is different for Excel queries. You can specify the
table that you want to query from an Excel workbook in one of four different ways:

464

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 464

❑ Worksheet Name Alone — When using the name of a specific worksheet as the table name in
your SQL statement, the worksheet name must be suffixed with a $ character and surrounded
with square brackets. For example, [Sheet1$] is a valid worksheet table name. If the worksheet
name contains spaces or non-alphanumeric characters, you must surround it with single quotes.
An example of this is [‘My Sheet$’].

❑ Worksheet-level Range Name — You can use a worksheet-level range name as a table name in
your SQL statement. Simply prefix the range name with the worksheet name it belongs to, using
the formatting conventions just described. An example of this would be
[Sheet1$SheetLevelName].

❑ Specific Range Address — You can specify the table in your SQL statement as a specific range
address on the target worksheet. The syntax for this method is identical to that for a worksheet-
level range name: [Sheet1$A1:E20].

❑ Workbook-level Range Name — You can also use a workbook-level range name as the table in
your SQL statement. In this case there is no special formatting required. You simply use the
name directly, without brackets.

Although your sample workbook contains only one worksheet, this is not a requirement. The target
workbook can contain as many worksheets and named ranges as you wish. You simply need to know
which one to use in your query. The following procedure demonstrates all four table-specifying methods
just discussed:

Public Sub QueryWorksheet()

Dim rsData As ADODB.Recordset
Dim sConnect As String
Dim sSQL As String

‘ Create the connection string.
sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Sales.xlsx;” & _
“Extended Properties=Excel 12.0;”

‘ Query based on the worksheet name.
‘sSQL = “SELECT * FROM [Sales$]”
‘ Query based on a sheet-level range name.
‘sSQL = “SELECT * FROM [Sales$SheetLevelName];”
‘ Query based on a specific range address.
‘sSQL = “SELECT * FROM [Sales$A1:E89];”
‘ Query based on a book-level range name.
sSQL = “SELECT * FROM BookLevelName;”

Set rsData = New ADODB.Recordset
rsData.Open sSQL, sConnect, adOpenForwardOnly, _

adLockReadOnly, adCmdText

‘ Check to make sure we received data.
If Not rsData.EOF Then

Sheet1.Range(“A1”).CopyFromRecordset rsData
Else

MsgBox “No records returned.”, vbCritical

465

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 465

End If

‘ Clean up our Recordset object.
rsData.Close
Set rsData = Nothing

End Sub

By default, the OLE DB provider for Microsoft Jet assumes that the first row in the table you specify with
your SQL statement contains the field names for the data. If this is the case, you can perform more com-
plex SQL queries, making use of the WHERE and ORDER BY clauses. If the first row of your data table does
not contain field names, however, you must inform the provider of this fact or you will lose the first row
of data. The way to accomplish this is by providing an additional setting, HDR=No, to the Extended
Properties argument of the connection string:

sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\Sales.xlsx;” & _
“Extended Properties=””Excel 12.0;HDR=No””;”

Note that when you pass multiple settings to the Extended Properties argument, the entire setting
string must be surrounded with double quotes and the individual settings must be delimited with semi-
colons. If your data table does not include column headers, you will be limited to SELECT queries.

Inserting and Updating Records in Microsoft Excel Workbooks
ADO can do more than just query data from an Excel workbook. You can also insert and update records
in the workbook, just as you would with any other data source. Deleting records, however, is not sup-
ported. Updating records, although possible, is somewhat problematic when an Excel workbook is the
data source, because Excel-based data tables rarely have anything that can be used as a primary key to
uniquely identify a specific record. Therefore, you must specify the values of enough fields to uniquely
identify the record concerned in the WHERE clause of your SQL statement when performing an update. If
more than one record meets WHERE clause criteria, all such records will be updated.

Inserting is significantly less troublesome. All you do is construct a SQL statement that specifies values
for each of the fields, and then execute it. Note once again that your data table must have column head-
ers in order for it to be possible to execute action queries against it. The following example demonstrates
how to insert a new record into the sales worksheet data table:

Public Sub WorksheetInsert()

Dim objConn As ADODB.Connection
Dim sConnect As String
Dim sSQL As String

‘ Create the connection string.
sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Sales.xlsx;” & _
“Extended Properties=Excel 12.0;”

‘ Create the SQL statement.
sSQL = “INSERT INTO [Sales$] “ & _

466

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 466

“VALUES(‘VA’, ‘On-Line’, ‘Computers’, ‘Mid’, 30);”

‘ Create and open the Connection object.
Set objConn = New ADODB.Connection
objConn.Open sConnect

‘ Execute the insert statement.
objConn.Execute sSQL, , adCmdText Or adExecuteNoRecords

‘ Close and destroy the Connection object.
objConn.Close
Set objConn = Nothing

End Sub

Note that if you use ADO to insert a new record into an Excel worksheet, and you use a range name as
the table in the INSERT statement, that range name will not be extended to include the new record.
Therefore, you should only use ADO to insert records into worksheets in situations where the worksheet
name can be used as the table in the INSERT statement.

Querying Text Files
The last data access technique to discuss in this chapter is querying text files using ADO. The need to
query text files doesn’t come up as often as some of the other situations addressed in this chapter.
However, when you’re faced with an extremely large text file, the result of a mainframe database data
dump, for example, ADO can be a lifesaver.

Not only will it allow you to rapidly load large amounts of data into Excel, but using the power of SQL
to limit the size of the resultset can also enable you to work with data from a text file that is simply too
large to be opened directly in Excel. For the discussion on text file data access, use a comma-delimited
text file, Sales.csv, whose contents are identical to the Sales.xlsx workbook used in the Excel exam-
ples in the previous section. The following example demonstrates how to construct a connection string
to access a text file:

szConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\;” & _
“Extended Properties=Text;”

Note that in the case of text files, the Data Source argument is set to the directory that contains the text
file. Do not include the name of the file in this argument. Once again, the provider is informed of the for-
mat to be queried by using the Extended Properties argument. In this case, you simply set this argu-
ment to the value “Text”.

Querying a text file is virtually identical to querying an Excel workbook. The main difference is how the
table name is specified in the SQL statement. When querying a text file, the filename itself is used as the
table name in the query. This has the added benefit of allowing you to work with multiple text files in a
single directory without having to modify your connection string.

As with Excel, you are limited to SELECT queries if the first row of your text file does not contain field
names. You must also add the HDR=No setting to the Extended Properties argument if this is the case,
in order to avoid losing the first row of data. The example text file has field names in the first row, and

467

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 467

you should assume that you need to limit the number of records you bring into Excel by adding a
restriction in the form of a WHERE clause to your query. The following procedure demonstrates this:

Public Sub QueryTextFile()

Dim rsData As ADODB.Recordset
Dim sConnect As String
Dim sSQL As String

‘ Create the connection string.
sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\;” & _
“Extended Properties=Text;”

‘ Create the SQL statement.
sSQL = “SELECT * FROM Sales.csv WHERE Type=’Art’;”

Set rsData = New ADODB.Recordset
rsData.Open sSQL, sConnect, adOpenForwardOnly, _

adLockReadOnly, adCmdText

‘ Check to make sure we received data.
If Not rsData.EOF Then

‘ Dump the returned data onto Sheet1.
Sheet1.Range(“A1”).CopyFromRecordset rsData

Else
MsgBox “No records returned.”, vbCritical

End If

‘ Clean up our Recordset object.
rsData.Close
Set rsData = Nothing

End Sub

Summary
Many years ago you could concentrate on understanding Excel, and that would have been enough to get
by. Today, however, it is becoming increasingly difficult to avoid coordinating your Excel activities with
a back-end data source of some kind. This chapter provided you with a solid introduction to using SQL
and ADO to access various data sources. Due to space constraints, this chapter could only scratch the
surface of possibilities in each section. So if data access is or might become a significant part of your
development effort, you are strongly recommended to obtain and read more specialized books on the
subject.

The next chapter continues to look at managing external data with Excel by examining some of the built-
in features provided by Excel for this purpose.

468

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 468

Managing External Data
Chapter 20 discussed how to access data with essentially unlimited flexibility using ADO. Excel
also provides some built-in data management features, primarily through the QueryTable,
ListObject, and WorkbookConnection objects. Excel’s built-in data management features have
less flexibility than custom ADO programming. For example, you can only use these features to
retrieve data, not modify it. But they are simpler and offer a number of useful capabilities right out
of the box. This chapter examines some of Excel’s built-in data management capabilities.

The External Data User Interface
The built-in data management features in Excel 2007 are accessed from two groups on the Data tab
of the Ribbon in the Excel 2007 user interface. The Get External Data and Manage Connections
groups are shown in Figure 21-1.

Figure 21-1

The controls on the Get External Data group are used to create new connections from your work-
book to various data sources, and the controls on the Manage Connections group are used to man-
age data connections that already exist in your workbook.

24_046432 ch21.qxp 2/16/07 10:03 PM Page 469

Get External Data
The controls in the Get External Data group allow you to retrieve external data directly from various
data sources or use predefined queries stored in various data connection files. The three buttons along
the left side of the Get External Data group provide quick access for retrieving Microsoft Access data,
data from the web, and data from text files, respectively. The From Other Sources button provides you
with a drop-down list of all the other options available for retrieving data from external data sources, as
shown in Figure 21-2.

Figure 21-2

This chapter is concerned with the external data features that create a QueryTable object in the back-
ground. These features include Web Queries and all queries performed on data sources that return
uncomplicated tabular data, including text files and relational databases like Access and SQL Server.

The Existing Connections button displays the Existing Connections dialog, shown in Figure 21-3. This
dialog displays a list of connections that currently exist in the workbook, as well as a list of stored data
connection files that you can use to retrieve external data.

The controls in the Get External Data group will be disabled if you have selected a cell within the range
of an existing external data connection. If these controls are disabled, try selecting an unused cell outside
of any existing data tables.

470

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 470

Figure 21-3

Manage Connections
The controls on the Manage Connections group allow you to manipulate the individual connections in
your workbook, as well as providing a central location for viewing and managing all connections in the
currently active workbook. The buttons in this group that operate on a specific connection will be dis-
abled until you select a cell within the range assigned to a connection. With a cell in a connection range
selected, the Manage Connections group will look similar to Figure 21-4.

Figure 21-4

The most interesting control on the Manage Connections group is the new Connections button. This dis-
plays a dialog that lists all of the external data connections in the currently active workbook and allows
you to see where they are used, as well as view and manipulate their properties. The Workbook
Connections dialog is shown in Figure 21-5.

471

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 471

Figure 21-5

The Properties and Refresh buttons on this dialog expose exactly the same features as those shown on
the Refresh All button in Figure 21-4.

The QueryTable and ListObject
When you use the Get External Data feature to create Web Queries or retrieve tabular data, you are creat-
ing a QueryTable to manage that data. This QueryTable can exist alone, or it can be associated with a
ListObject (the ListObject is also covered in Chapter 6). Retrieving data using Web Queries or text
files from the user interface will create a standalone QueryTable. Retrieving data from relational
databases like Access or SQL Server will create a ListObject whose data source is a QueryTable.
When you create your own QueryTable objects using VBA, you are free to create them either way. Both
methods are demonstrated in this section.

A QueryTable from a Relational Database
As a first introduction to the QueryTable object, create a simple QueryTable based on a table from the
Access 2007 Northwind database used in Chapter 20. The code to create the QueryTable is as follows:

This section utilizes the Northwind database, a sample database provided with
Microsoft Access 2007. If you don’t have this database available, you will need to
install it to run the example code.

472

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 472

Sub CreateSimpleQueryTable()

Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String

‘ Define the connection string and destination range.
strConnection = “OLEDB;Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Northwind 2007.accdb”
Set rngDestination = Sheet1.Range(“A1”)

‘ Create the QueryTable.
Set qryTable = Sheet1.QueryTables.Add(strConnection, rngDestination)

‘ Populate the QueryTable.
qryTable.CommandText = “Customers”
qryTable.CommandType = xlCmdTable
qryTable.Refresh

End Sub

There are three steps involved in creating a QueryTable:

1. Define the connection string and destination range. If the connection string used here looks
familiar, that’s no coincidence. It’s almost exactly the same connection string used to create an
ADO connection to the Northwind 2007 Access database in Chapter 20. This is because both
ADO and QueryTables use the same underlying OLE DB drivers to connect to relational
databases. The only difference in this case is that the first item in the connection string must
specify what type of connection string it is (in this case OLEDB). This is because a QueryTable
can be based on several different connection types, so you need to tell it which type you’re
using. The destination range is a reference to the cell on the destination worksheet that you
want to be the top-left cell in the resulting QueryTable.

2. Create the QueryTable object. This is a simple matter of calling the QueryTables.Add method,
passing it the connection string and destination range defined in step 1, and assigning the result
to a QueryTable object variable that will be used for further manipulation of the QueryTable.

3. Populate the QueryTable object. After step 2, the QueryTable exists, it knows what its data
source is, and it knows where on the destination worksheet it will be located. However, it
doesn’t know what data to display. Remedy this by using the CommandText and CommandType
properties of the QueryTable object to tell it to display the contents of the Customers table.
Actual retrieval of data is accomplished by calling the QueryTable.Refresh method.

A section of the QueryTable created in the previous example is shown in Figure 21-6.

Figure 21-6

473

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 473

A QueryTable that displays data from a relational database may need to be updated periodically — for
example, in cases where other users may have added new records that need to be displayed. You can
update the QueryTable data at any time by calling the QueryTable.Refresh method. The QueryTable
will also perform this operation for you automatically, if you tell it to do so by adding the following line
of code:

‘ Populate the QueryTable.
qryTable.CommandText = “Customers”
qryTable.CommandType = xlCmdTable
qryTable.RefreshPeriod = 30
qryTable.Refresh

This line of code tells the QueryTable to refresh itself automatically every 30 minutes, and it will
continue to do so every 30 minutes for as long as the workbook is open. The value assigned to the
QueryTable.RefreshPeriod property is persisted, so even after you close and reopen the workbook
containing the QueryTable, it will continue to refresh automatically at the interval you’ve specified.
The refresh period is specified in minutes, with valid values being 1 through 32,767. Setting the
QueryTable.RefreshPeriod property to 0 disables automatic refreshing. This is also the default
value if you don’t specify this property.

You can think of a QueryTable as a container for whatever data you want to put in it. Just like you can
refresh the QueryTable at any time to update it with the latest data from the data source, you can also
change the data displayed by the QueryTable at any time by simply changing its CommandText and
CommandType properties and calling its Refresh method:

With Sheet1.QueryTables(1)
.CommandText = “SELECT [First Name], [Last Name] FROM Customers”
.CommandType = xlCmdSql
.Refresh

End With

This code changes the QueryTable from displaying the entire Customers table to deriving its data from
a SQL statement that retrieves just the first and last names of each customer. See Chapter 20 for an intro-
duction to SQL if you aren’t familiar with it. As soon as this code is executed, the results displayed by
the QueryTable will change accordingly, as shown in Figure 21-7.

Figure 21-7

By default, a QueryTable will perform what is called a background query. This means that as soon as the
query specified by the QueryTable has been submitted, VBA will return control of Excel back to the user.
This may be a good choice if the QueryTable performs a long-running query and you don’t want to
require the user to sit and wait for it to finish. It may also be a bad choice if something critical in your appli-
cation depends on the result of the query, and it therefore must be completed before your code continues.

474

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 474

In this case you may want to turn off background querying by setting the QueryTable.BackgroundQuery
property to False:

‘ Populate the QueryTable.
qryTable.CommandText = “Customers”
qryTable.CommandType = xlCmdTable
qryTable.RefreshPeriod = 30
qryTable.BackgroundQuery = False
qryTable.Refresh

The QueryTable.Refresh method also has a BackgroundQuery argument that can be set to False
to accomplish the same thing without requiring an additional line of code. The difference is that the
QueryTable.BackgroundQuery property is persistent and applies to all future refreshes, whereas the
BackgroundQuery argument to the QueryTable.Refresh method must be specified each time you
refresh the QueryTable or it will simply default to True.

A Query Table Associated with a ListObject
Standalone QueryTables are good for retrieving data that will be used for background or display pur-
poses only. If you want the user to be able to interact with the data after it has been retrieved, a better
option is to create a QueryTable associated with a ListObject. This creates a table in the Excel user
interface with all of the built-in ease-of-manipulation features that users need to work with the data.

The code for creating a QueryTable associated with a ListObject is very similar to the code for creat-
ing a QueryTable alone. In fact, the preceding QueryTable example can be modified to use a
ListObject by changing a single line of code:

Sub CreateQueryTableWithList()

Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String

‘ Define the connection string and destination range.
strConnection = “OLEDB;Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Northwind 2007.accdb”
Set rngDestination = Sheet2.Range(“A1”)

‘ Create the ListObject and get a reference to its QueryTable.
Set qryTable = Sheet2.ListObjects.Add(SourceType:=xlSrcExternal, _

Source:=strConnection, Destination:=rngDestination).QueryTable

‘ Populate the QueryTable.

Note that there is some overlap between the QueryTable and ListObject proper-
ties and methods. For example, both the QueryTable and ListObject have a
Refresh method that updates their data. When there is duplication, which object’s
property or method you decide to use is a matter of preference. Because this chapter
focuses on QueryTables, the QueryTable properties and methods are used wher-
ever there is duplication between the two object models.

475

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 475

qryTable.CommandText = “Customers”
qryTable.CommandType = xlCmdTable
qryTable.Refresh False

End Sub

The process for creating a standalone QueryTable and the process for creating a QueryTable associated
with a ListObject are fundamentally the same, the only difference being that you use the arguments of
the ListObjects.Add method to specify the connection string and destination. Because a ListObject
can have a number of additional data sources besides the external data used in this example, you also
need to specify what type of data source your connection string represents, using the SourceType argu-
ment of the ListObjects.Add method. See Chapter 6 for more details on ListObjects.

A portion of the table created by the previous code is shown in Figure 21-8.

Figure 21-8

Any time a ListObject is created from an external data source, either using VBA or through the Excel
UI, an associated QueryTable object is created. You can use this QueryTable to manipulate the source
data for any ListObject in a workbook.

QueryTables and Parameter Queries
It is often useful to base your QueryTable on a parameter query rather than a fixed SQL statement. This
allows you to determine which subset of the data you display, and even allows you to provide your
users with the ability to modify the parameters when the QueryTable is refreshed.

One notable quirk of parameter queries is that QueryTables will not support them if you use the OLE
DB provider used in the previous two sections. Instead, you must switch to the ODBC driver. This is a
simple matter of changing the first argument of the connection string from OLEDB to ODBC and provid-
ing ODBC connection information:

Sub CreateQueryTableWithParameters()

Dim qryTable As QueryTable
Dim rngDestination As Range

Note that a QueryTable associated with a ListObject is not part of the Worksheet
.QueryTables collection. It can only be accessed through the ListObject.QueryTable
property of its associated ListObject. If you are using VBA to examine worksheets
for the existence of query tables, you will need to look for them both directly in the
QueryTables collection and indirectly in the ListObjects collection.

476

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 476

Dim strConnection As String
Dim strSQL As String

‘ Define the connection string and destination range.
strConnection = “ODBC;DSN=MS Access Database;” & _

“DBQ=C:\Files\Northwind 2007.accdb;”
Set rngDestination = Sheet3.Range(“A1”)

‘ Create a parameter query.
strSQL = “SELECT [Product Name], [List Price], [Quantity Per Unit]” & _

“ FROM Products” & _
“ WHERE Category = ?;” ‘ This is the parameter.

‘ Create the QueryTable.
Set qryTable = Sheet3.QueryTables.Add(strConnection, rngDestination)

‘ Populate the QueryTable.
qryTable.CommandText = strSQL
qryTable.CommandType = xlCmdSql
qryTable.Refresh False

End Sub

In this example, you set the CommandText property of the QueryTable to a SQL statement that selects
the Product Name, List Price, and Quantity Per Unit from the Products table of the Northwind 2007
database. The WHERE clause of the SQL statement contains a parameter. A parameter is created by plac-
ing a question mark character (?) where an actual value would normally go. A SQL statement may con-
tain one or more parameters at any point where a value from the database would normally go. You
cannot use parameters for table names, column names, or SQL keywords.

When this code is executed, VBA automatically recognizes that the SQL contains a parameter, and it will
prompt you to enter a value for the parameter by displaying the dialog box shown in Figure 21-9.

Figure 21-9

For each parameter in the CommandText property of the QueryTable, VBA creates a Parameter object
that it adds to the QueryTable.Parameters collection. You can gain some additional control over how
parameters are handled by creating these Parameter objects and adding them to the Parameters col-
lection yourself.

You create parameters using the QueryTable.Parameters.Add method. This method adds a
Parameter object to the QueryTable and returns a reference to it. You can then use that reference to
modify the behavior of the Parameter object. The next example uses this capability to prepopulate the

477

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 477

parameter with an initial value when the QueryTable is first created, and then to have it prompt the
user for a new value each time the QueryTable is refreshed after that.

Sub CreateQueryTableWithParameters()

Dim objParam As Parameter
Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String
Dim strSQL As String

‘ Define the connection string and destination range.
strConnection = “ODBC;DSN=MS Access Database;” & _

“DBQ=C:\Files\Northwind 2007.accdb;”
Set rngDestination = Sheet3.Range(“A1”)

‘ Create a parameter query.
strSQL = “SELECT [Product Name], [List Price], [Quantity Per Unit]” & _

“ FROM Products” & _
“ WHERE Category = ?;” ‘ This is the parameter.

‘ Create the QueryTable.
Set qryTable = Sheet3.QueryTables.Add(strConnection, rngDestination)

‘ Create the parameter and give it an initial value.
Set objParam = qryTable.Parameters.Add(“Select Category”, _

xlParamTypeVarChar)
objParam.SetParam xlConstant, “Beverages”

‘ Populate the QueryTable.
qryTable.CommandText = strSQL
qryTable.CommandType = xlCmdSql
qryTable.Refresh False

‘ Configure the parameter to prompt the user for a
‘ new value the next time the QueryTable is refreshed.
objParam.SetParam xlPrompt, “Select Category”

End Sub

You can also configure a Parameter to retrieve its value from a cell on the worksheet, and to automati-
cally refresh the QueryTable whenever the value in that cell changes. This allows you to, for example,
provide the users with a data validation list of choices for the parameter, rather than forcing them to
remember all the potentially valid values. This feature is also very useful when your query requires mul-
tiple parameters. Rather than having to contend with a prompt dialog for every parameter, the user can
simply make the appropriate entries in the cells that specify the parameters.

If you create your own Parameter objects, they must be created in the same order
that the corresponding parameters appear in the SQL statement.

478

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 478

If you replace the final line of code in the preceding procedure with the following two lines of code, the
Parameter will retrieve its value from cell F1 and refresh the QueryTable automatically whenever the
value in cell F1 changes:

‘ Configure the parameter to retrieve its value from cell F1
‘ and refresh the QueryTable whenever that value changes.
objParam.SetParam xlRange, Sheet3.Range(“F1”)
objParam.RefreshOnChange = True

In the previous examples, you used all three options provided by the Parameter.SetParam method.
The first argument of the SetParam method specifies the option to be used, and the second argument
provides additional data for that option. The three SetParam options are as follows:

❑ xlConstant— Tells the parameter to use the value specified by the second argument. The sec-
ond argument can be anything that returns a value of the correct data type for the parameter,
including a variable, a cell reference, or a hard-coded value.

❑ xlPrompt— Tells the parameter to prompt the user for its value. The second argument is the
prompt string that will appear in the dialog box.

❑ xlRange— Tells the parameter to retrieve its value from the cell specified by the second argu-
ment. The second argument must be a valid Range object.

QueryTables from Web Queries
QueryTables are not limited to retrieving data from traditional databases. They can also retrieve data
from web sites. Creating a QueryTable based on a web site is known as performing a Web Query. A
simple example of a QueryTable based on a Web Query follows. It pulls in the most recent data on
major U.S. financial indexes from the Wall Street Journal web site:

Sub CreateWebQuery()

Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String

‘ Define the connection string and destination range.
strConnection = “URL;http://online.wsj.com/public/page/” & _

“markets.html?mod=hpp_us_indexes”
Set rngDestination = Sheet4.Range(“A1”)

‘ Create the QueryTable.
Set qryTable = Sheet4.QueryTables.Add(strConnection, rngDestination)

‘ Populate the QueryTable.
qryTable.WebSelectionType = xlSpecifiedTables
qryTable.WebTables = “19”
qryTable.WebFormatting = xlWebFormattingAll
qryTable.Refresh False

End Sub

479

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 479

Note the similarity between this code and the code used to create a QueryTable from a relational
database. The differences are the content of the connection string and a different set of properties that
must be set prior to refreshing the QueryTable.

You inform the QueryTable that it will be performing a Web Query by specifying URL as the first argu-
ment in the connection string. The rest of the connection string is a URL that specifies the web page from
which you want to retrieve the data.

You could retrieve an entire web page with your Web Query, but this is rarely what you want to do.
Most web pages are structured as a group of HTML tables nested and arranged to produce the visual
layout you see in your browser. The Web Querying functionality of the QueryTable object lets you take
advantage of this fact by allowing you to specify just the table or tables on the web site that you want to
retrieve.

This is accomplished by setting the WebSelectionType property to xlSpecifiedTables and then
listing the index numbers of the tables you want to retrieve in the WebTables property. If you want to
retrieve more than one table, simply separate the list of index numbers with commas. There is no tried
and true method for determining which table index number holds the data you want. The easiest way to
determine this value is to start with code similar to that shown earlier, and increment the WebTables
property beginning with the number 1 until you locate the index that corresponds to the data you want.
A section of the result of the Web Query is shown in Figure 21-10.

Figure 21-10

You have three formatting options for the results returned by the Web Query, controlled by the value of
the WebFormatting property:

❑ xlWebFormattingAll— Imports the HTML format of the results exactly as they appear on the
source web page, including functioning hyperlinks.

❑ xlWebFormattingRTF— Imports the data with the HTML formatting converted to rich-text
format. This will produce results similar to xlWebFormattingAll, but without hyperlinks or
merged cells.

❑ xlWebFormattingNone— Imports the data as plain text.

Although the ability to specify a table index gives you significant flexibility in a
Web Query, it also makes your code vulnerable to design changes on the target web
site that might cause a change in the table index number of the table you want to
retrieve.

480

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 480

You will note the obvious thick gray bars separating the rows of data in Figure 21-10. These appear
because that is how the table was structured on the source web page. You will often get artifacts like this
when performing web queries. You can simply hide these rows and they will remain hidden, even when
the QueryTable is refreshed. Just don’t forget to unhide any rows and/or columns you’ve hidden if you
do something that changes the structure of the Web Query such that the data you want to display ends
up hidden.

Some web sites provide parameterized URLs specifically designed for use in web queries. The Yahoo
Finance web site is one example. It provides a URL to which you can append a comma-delimited list of
stock symbols to retrieve the information for. The following example creates a parameterized Web Query
procedure that wraps this Yahoo Finance URL. Just call this procedure and pass it a comma-delimited
list of stock ticker symbols, and it will return a table with the latest data for those symbols. You can pass
as few or as many symbols as you like:

Sub ParameterizedWebQuery(strQuoteList As String, wksSheet As Worksheet)

Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String

‘ Define the connection string and destination range.
strConnection = “URL;http://finance.yahoo.com/q/cq?d=v1&s=” & strQuoteList
Set rngDestination = wksSheet.Range(“A1”)

‘ Create the QueryTable.
Set qryTable = wksSheet.QueryTables.Add(strConnection, rngDestination)

‘ Populate the QueryTable.
qryTable.WebSelectionType = xlSpecifiedTables
qryTable.WebTables = “9”
qryTable.WebFormatting = xlWebFormattingNone
qryTable.Refresh False

End Sub

Sub CallParameterizedWebQuery()
ParameterizedWebQuery “MSFT, DELL, IBM”, Sheet6

End Sub

In this example, you call the parameterized Web Query procedure, pass it the stock symbols for
Microsoft, Dell, and IBM, and tell it to place the resulting QueryTable on Sheet6. The results of this Web
Query are shown in Figure 21-11.

Figure 21-11

481

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 481

In a real-world application, you would typically let the user specify the list of stock symbols — for exam-
ple, by allowing them to pick the symbols from a list in a UserForm or allowing them to enter the sym-
bols on a worksheet. You would then read the selected symbols, create a comma-delimited list from
them, and pass this list to the ParameterizedWebQuery procedure.

Like all QueryTables, you can modify the data displayed by a QueryTable based on a Web Query
at any time. Unlike QueryTables based on relational databases, however, you cannot modify the
CommandText property of a QueryTable based on a Web Query. In fact, attempting to do so will render
the QueryTable inoperable.

Instead, you change the data displayed in a QueryTable based on a Web Query by modifying its
Connection property. The new connection string must be in exactly the same format as a connection
string used to create a Web Query initially, and if the table index you want to retrieve is different from
the current WebTables property value, you will have to update that property as well prior to refreshing
the QueryTable.

A QueryTable from a Text File
You can also use a QueryTable to extract data from a text file. The advantage of using a QueryTable as
opposed to the Workbooks.OpenText method is that the text file data can be loaded directly into the
workbook you specify, as opposed to being opened in a new workbook.

This example uses the same Sales.csv source file used in the ADO text file example in Chapter 20. The
code to load data from this text file using a QueryTable is as follows:

Sub QueryTableFromTextFile()

Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String

‘ Define the connection string and destination range.
strConnection = “TEXT;C:\Files\Sales.csv”
Set rngDestination = Sheet6.Range(“A1”)

‘ Create the QueryTable.
Set qryTable = Sheet6.QueryTables.Add(strConnection, rngDestination)

‘ Populate the QueryTable.
qryTable.TextFileStartRow = 1
qryTable.TextFileParseType = xlDelimited
qryTable.TextFileCommaDelimiter = True

There is no tried and true method for determining how to structure the URL used in
a Web Query. If the format is not documented on the web site (and it rarely will be),
you can use the macro recorder and experiment with the site directly in the web
browser to determine the appropriate format for the Web Query URL. This is how
both of the URLs in the previous examples were created.

482

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 482

qryTable.TextFileTextQualifier = xlTextQualifierNone
qryTable.TextFileColumnDataTypes = Array(2, 2, 2, 2, 1)
qryTable.Refresh False

End Sub

You inform the QueryTable that it will be extracting data from a text file by specifying TEXT as the first
argument in the connection string. The second argument of the connection string is the full path and file-
name of the text file.

The QueryTable object has a series of text file-specific properties that allow you to control how the text
file data is loaded. The following list describes the five of these properties that are most commonly used:

❑ TextFileStartRow— This property tells the query table which row of the text file to start with
when it loads the data. A text file may have one or more initial rows that are not part of the data
set. You can use this property to skip these initial rows by specifying some number greater than
1. A value of 1 tells the QueryTable to import the entire text file.

❑ TextFileParseType— This property tells the QueryTable whether the columns of data
in the text file are separated by some delimiting character (xlDelimited) or are fixed width
(xlFixedWidth). The value of this property will determine which additional properties you spec-
ify. Your text file is comma-delimited, so the options for a delimited text file are discussed next. If
your text file has fixed-width columns, you would also set the TextFileFixedColumnWidths
property to an array of column width values, one for each column in your text file.

❑ TextFileCommaDelimiter— When loading a delimited text file, you need to tell the
QueryTable what delimiter to look for. You’re loading a comma-delimited text file, so you set
the TextFileCommaDelimiter property to True. The following additional properties are avail-
able to specify other delimiters: TextFileTabDelimiter, TextFileSemicolonDelimiter,
TextFileSpaceDelimiter, and TextFileOtherDelimiter.

❑ TextFileTextQualifier— You will often encounter text files where values in text data
type fields are surrounded by single or double quotes. This property is used to inform the
QueryTable if this is the case, and if so, which of these characters it should treat as a qualifier
and ignore when loading the data. The options are xlTextQualifierSingleQuote,
xlTextQualifierDoubleQuote, and xlTextQualifierNone. You use the last option
because your text file does not use any text field qualifiers.

❑ TextFileColumnDataTypes— This property is used to tell the QueryTable how to interpret
each column of data in the text file. The property takes an array of integer values, one for each
column in the text file, that specify what type of data is contained in those columns. For uncom-
plicated text and numeric data, you can normally pass the value 1 for every column. This tells
the QueryTable to automatically determine what type of data is being loaded. If the text file
contains data that may be misinterpreted, you can use this property to tell the QueryTable
what type of data is contained in each column. A value of 2 means the column contains text
data. A value of 9 tells the QueryTable to skip the column entirely. The additional seven allow-
able numeric values are used to handle various arrangements of date data types. See the VBA
help for more details on these.

483

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 483

Creating and Using Connection Files
The information used to create query tables can be stored to a file on disk, called a connection file, and
reused. Connection files provide several advantages when used in conjunction with QueryTables. They
allow you to create a variety of query tables, store them to disk, and distribute them with your applica-
tions. Users can also use connection files directly by selecting them from the Existing Connections dialog
on the Data tab of the Ribbon. Finally, if some detail of the data source changes — for example, the server
name where a relational database is located, you can simply edit the connection file to reflect the new
information and redistribute it. QueryTables based on the connection file will then be updated auto-
matically with the new information.

Unfortunately, connection files do not present a very consistent story. There are more than half a dozen
potential file types available, and most of them can be used for multiple types of source data. Each of the
three data sources covered in this chapter (databases, web queries, and text files) requires a different
type of connection file. This section focuses on Office Data Connect (.odc) and Web Query (.iqy) files.
Office Data Connect files store connection information for databases, and Web Query files store connec-
tion information for web queries.

Connection files are simply text files with a file extension that identifies their type and contents, format-
ted according to what that type of connection requires. Connection files can be stored and used from any
accessible directory on a computer, but connection files that you want to be visible automatically in the
Get External Data ➪ Existing Connections list in the Excel user interface must be located in one of the fol-
lowing places:

❑ The C:\...\My Documents\My Data Sources\ folder under the profile of the currently
logged-in user.

❑ The C:\Program Files\Common Files\ODBC\Data Sources\ folder.

❑ The C:\Program Files\Microsoft Office\Office12\Queries\ folder.

❑ A custom location that has been defined by your network administrator through the use of
Office policy settings.

Office Data Connect Files
An Office Data Connect (ODC) file contains XML data that specifies all of the information required to re-
create an external connection to a database. See Chapter 12 for an introduction to XML if you aren’t
familiar with it. Although an ODC file contains XML data, it is not a well-formed XML file, so if you
need to edit its contents, you may find it easier to use a text editor as opposed to an XML editor.

You can save the connection information for a QueryTable or ListObject to an ODC file by using the
SaveAsODC method. The following line of code demonstrates how to save an ODC file that represents
the first QueryTable created earlier in this chapter:

Sheet1.QueryTables(1).SaveAsODC “C:\Files\CustomersTable.odc”

ODC files can only be saved from QueryTables of ListObjects that were created
through OLEDB. Because utilizing parameter queries requires the use of ODBC, you
cannot save an ODC file for a QueryTable or ListObject that utilizes a parameter
query.

484

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 484

Upon opening the CustomersTable.odc file in a text editor, you will see a lot of content, most of which
is beyond the scope of this chapter. All the data you would potentially need to edit is contained within
the two XML elements located near the top of the file. An abbreviated version of these two elements is as
follows:

<xml id=docprops>
<o:DocumentProperties.....>
<o:Name>Connection</o:Name>
</o:DocumentProperties>
</xml>
<xml id=msodc>
<odc:OfficeDataConnection.....>
<odc:Connection odc:Type=”OLEDB”>
<odc:ConnectionString>
Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Files\Northwind 2007.accdb;...
</odc:ConnectionString>
<odc:CommandType>Table</odc:CommandType>
<odc:CommandText>Customers</odc:CommandText>
</odc:Connection>
</odc:OfficeDataConnection>
</xml>

The first XML element, called the docprops element, contains the name that will be displayed to the
user in the Existing Connections dialog. This is automatically given the same name as the connection
from which the ODC file was derived. Because you did not explicitly name your connection when you
created it, VBA gave it the default name Connection. This is what you see stored in the Name element
within the XML docprops element. You can simply edit this value to give the ODC file a more meaning-
ful description.

The second XML element, called the msodc element, contains the connection string, command text, and
command type used to create the QueryTable. The connection string that you see in the preceding
example shows just the arguments you specified when you created the original QueryTable. If you
open the ODC file yourself, you will see more than a dozen additional connection string arguments.
These are simply the default values that OLEDB uses for any arguments you haven’t specified.

Again, however, a connection string is simply plain text, so if you needed to modify the path
to the database for all users of your application, you could simply type a new path into the
ConnectionString element, save the file, and distribute it to everyone using your application.
Any QueryTables built from the connection file would automatically update themselves with the
new information.

To use the CustomersTable.odc file, you need to attach it to your QueryTable in the following manner:

qryTable.SourceConnectionFile = “C:\Files\CustomersTable.odc”
qryTable.RobustConnect = xlAlways

Be sure the QueryTable to which you are attaching the ODC file is the same QueryTable from which it
was created. Once you have done this, the QueryTable will use the information contained in the speci-
fied ODC file to obtain its connection information whenever it needs to be refreshed.

485

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 485

Web Query Files
Web Query (IQY) files are far simpler and easier to understand than ODC files. The process of generat-
ing an IQY file from an existing Web Query is a bit convoluted. There’s no automated method of creating
them like there is with ODC files. Creating an IQY file from an existing Web Query requires the follow-
ing steps:

1. Open the Workbook Connections dialog using the Data ➪ Manage Connections ➪ Connections
button.

2. In the Workbook Connections dialog, select the connection that corresponds to your Web Query
and click the Properties button. This will display the Connection Properties dialog.

3. In the Connection Properties dialog, select the Definition tab and click the Edit Query button.
This will display the Edit Web Query dialog.

4. You will see a toolbar across the top of the Edit Web Query dialog. The second button from the
left on this toolbar is the Save Query button. Click this button and you will be prompted by a
Save Workspace dialog to save your Web Query as an IQY file.

If you perform these steps on the connection for the Wall Street Journal Web Query created in the previ-
ous section, an IQY file with the following contents will be generated:

WEB
1
http://online.wsj.com/public/page/markets.html?mod=hpp_us_indexes

Selection=19
Formatting=All
PreFormattedTextToColumns=False
ConsecutiveDelimitersAsOne=False
SingleBlockTextImport=False
DisableDateRecognition=False
DisableRedirections=True

Only three entries in this file are important for your purposes. These are the URL, Selection, and
Formatting entries. In fact, you could delete everything in the IQY file other than these three entries
and the query would perform exactly as expected.

The URL is self-explanatory. It’s the same URL used in the connection string when you originally created
the Web Query. The Selection line specifies what the query should retrieve. This will be either the
string value EntirePage or a number indicating the specific table you wish to retrieve. In this case the
number 19 was generated, because that is the index number of the table specified when the Web Query
was created.

It would be nice if you could simply create a new QueryTable using the ODC file as
the data source in the first place. However, because the Connection argument of the
QueryTables.Add method is required and does not accept an ODC file as its value,
you must create the QueryTable initially in the manner shown in the previous sec-
tion, and then attach the QueryTable to the ODC file afterward.

486

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 486

The Formatting line specifies how the query should be formatted on the worksheet. Its potential values
are All, RTF, or None, which correspond to the similarly named settings for the WebFormatting argu-
ment described in the previous section.

In addition to simplicity, IQY files have one additional advantage over ODC files for VBA programmers:
you can create a new QueryTable directly from an IQY file using VBA. You could re-create the Wall
Street Journal QueryTable example using the preceding IQY file in the following manner:

Sub CreateWebQueryFromIQY()

Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String

‘ Define the connection string and destination range.
strConnection = “FINDER;C:\Files\Wall Street Journal Query.iqy”
Set rngDestination = Sheet7.Range(“A1”)

‘ Create the QueryTable.
Set qryTable = Sheet7.QueryTables.Add(strConnection, rngDestination)

‘ Populate the QueryTable.
qryTable.Refresh False

End Sub

When creating a QueryTable from an IQY file, you pass FINDER as the first argument to the connection
string and the full path and filename of the IQY file as the second argument. Notice that you don’t need
to set any additional properties of the QueryTable after creating it and prior to refreshing it. This is
because all this information is contained in the IQY file.

The WorkbookConnection Object and the
Connections Collection

New to Excel 2007 is an object and collection designed to manage all external data connections in a
workbook. Each time you create any one of the built-in objects that Excel uses to manage external data,
including QueryTables, ListObjects, and PivotCaches, you are also creating a new instance of a
WorkbookConnection object. All of the WorkbookConnection objects in a given workbook are con-
tained in the Workbook.Connections collection for that workbook.

You can also create a standalone WorkbookConnection object, one that is not associated with any exter-
nal data container. The eventual intent for this feature is to allow you to create query tables, list objects,
and all other external data containers using a WorkbookConnection object as the data source. However,
as of Excel 2007, this feature has only been implemented for PivotCache objects. See Chapter 7 for more
details on PivotCache objects.

487

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 487

You can create a new WorkbookConnection object using the Add or AddFromFile methods of the
Workbook.Connections collection. The following example creates a new WorkbookConnection using
the Add method:

Sub CreateNewConnection()

Dim objWBConnect As WorkbookConnection

Set objWBConnect = ThisWorkbook.Connections.Add(_
Name:=”New Connection”, _
Description:=”My New Connection Demo”, _
ConnectionString:=”OLEDB;Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Northwind 2007.accdb”, _
CommandText:=”SELECT [First Name], [Last Name] FROM Customers”, _
lCmdtype:=xlCmdSql)

End Sub

After a WorkbookConnection object has been created, it is persisted when the workbook is saved. It
will then be available any time the workbook is open, so there is no need to re-create it.

You can also use the Workbook.Connections collection to iterate through all the WorkbookConnection
objects in a workbook and examine or modify their properties. The next example populates a worksheet
with a list of all WorkbookConnection objects in the current workbook, and their type and their connec-
tion string if applicable:

Sub ExamineWorkbookConnections()

Dim lOffset As Long
Dim objWBConnect As WorkbookConnection

Sheet8.UsedRange.Clear
With Sheet8.Range(“A1:C1”)

.Value = Array(“Connection Name”, “Connection Type”, “Connection String”)

.EntireColumn.AutoFit
End With

For Each objWBConnect In ThisWorkbook.Connections
lOffset = lOffset + 1
Sheet8.Range(“A1”).Offset(lOffset, 0).Value = objWBConnect.Name
Sheet8.Range(“A1”).Offset(lOffset, 1).Value = objWBConnect.Type
If objWBConnect.Type = xlConnectionTypeODBC Then

Sheet8.Range(“A1”).Offset(lOffset, 2).Value = _
objWBConnect.ODBCConnection.Connection

ElseIf objWBConnect.Type = xlConnectionTypeOLEDB Then
Sheet8.Range(“A1”).Offset(lOffset, 2).Value = _

objWBConnect.OLEDBConnection.Connection
Else

Sheet8.Range(“A1”).Offset(lOffset, 2).Value = “Not Applicable”
End If

Next objWBConnect

End Sub

488

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 488

Note that WorkbookConnection objects based on ODBC and OLE DB have additional child connection
objects, the ODBCConnection object and OLEDBConnection object. These objects maintain the connec-
tion information required by ODBC and OLE DB.

External Data Security Settings
When you open an Excel 2007 workbook that contains connections to external data, you will encounter a
security prompt like the one displayed in Figure 21-12.

Figure 21-12

You can enable your external connections by clicking the Enable Content button and choosing the option
to enable the content. If you don’t do this, any automatic refreshing of your QueryTables, ListObject,
or other data containers attached to external data will be disabled without further warning. If you
attempt to manually refresh any of the data in your workbook, you will be prompted by another secu-
rity warning, shown in Figure 21-13.

Figure 21-13

If you click OK in this dialog, all of your external data connections will be enabled. If you click Cancel,
all of your external data connections will remain disabled and the refresh will not take place.

You can avoid these security issues by placing your file in a trusted location, or by selecting the Enable
All Data Connections option in the Trust Center ➪ External Content section. Trusted locations are
beyond the scope of this chapter, but you can enable all data connections in all workbooks you open in
Excel 2007 using the following steps:

1. Click the Microsoft Office Button, and then click the Excel Options button. This will open the
Excel Options dialog.

2. In the Excel Options dialog, select Trust Center from the list on the left side.

3. Next, click the Trust Center Settings button on the right side of the Excel Options dialog. This
will open the Trust Center dialog.

4. In the Trust Center dialog, select External Content from the list on the left side.

489

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 489

You should now see at the dialog as it appears in Figure 21-14.

Figure 21-14

If you select the Enable all Data Connections option from the Security Settings for Data Connections sec-
tion on the left side of the dialog, your external connections will be enabled automatically. Note that this
setting can only be made manually; there’s no way to use VBA to dynamically enable content on a user’s
computer. Also, if you’re working on a corporate network, your network administrator may set security
policies that do not allow you to make this change at all.

Summary
This chapter examined the built-in features Excel provides for dealing with external data, as exposed
through the QueryTable object. It showed how to use query tables to retrieve data from relational
databases, web sites, and text files. The chapter examined how connection files allow you to persist
QueryTable connection information to an easily modified and distributed text file, and you took a brief
look at the two new objects used to manage connection information in Excel 2007: the Workbook
.Connections collection and the WorkbookConnection object.

490

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 490

